全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Serum Immunoglobulin Free Light Chain Assessment in IgG4-Related Disease

DOI: 10.1155/2013/426759

Full-Text   Cite this paper   Add to My Lib

Abstract:

Immunoglobulin free light chains are produced in excess during normal antibody synthesis. Their evaluation is commonly used in case of a monoclonal gammopathy. In polyclonal hypergammaglobulinemia related to the Sj?gren syndrome or systemic lupus, erythematosus serum free light chain levels are increased and could correlate with disease activity. We show here that the κ ( ) and λ ( ) free light chains and the κ?:?λ ratio ( ) are increased in sixteen patients with IgG4-related disease when compared to healthy controls. The increase of κ and λ free light chains probably reflects the marked polyclonal B cell activation of the disease. We could not assess in this small cohort of patients a significative correlation of serum free light chain levels and disease activity or extension. 1. Introduction Immunoglobulin free light chains (FLCs) are produced during antibody synthesis by B lymphocytes. Immunoglobulins have a tetrameric structure composed of two identical heavy and two identical light chains (kappa or lambda) linked together by disulphide bonds. Heavy and light chains assembly occurs in the endoplasmic reticulum. During antibody synthesis, there is an excess of light chain production. These FLCs are secreted into the circulation, where rapid renal clearance results in a short half-life of 2–6 hours [1]. Nowadays highly sensitive nephelometric immunoassay, with antibodies recognizing epitopes specific for free kappa (κ) or lambda (λ) light chains, are available [2]. Reference and diagnostic ranges for serum FLC (sFLC) and the κ?:?λ ratio have been determined with these assays [3]. In the context of a monoclonal gammopathy of undetermined significance the evaluation of the κ?:?λ ratio has been shown to correlate with the prognosis [4]. Moreover, this assay is now commonly used to quantify the monoclonal component in case of light chain multiple myeloma or AL amyloidosis [5, 6]. Decreased glomerular filtration rate (GFR) in renal insufficiency, associated either with a monoclonal gammopathy or other chronic kidney diseases, has an influence on FLC levels. Polyclonal sFLC levels are increased as a consequence of the reduction of their clearance [1]. The κ?:?λ ratio also increases because the κ FLC clearance is more influenced by the GFR than the λ FLC [1]. sFLC overproduction has also been reported in cases of a polyclonal increase of immunoglobulins. This has been shown in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sj?gren’s syndrome [7–9]. However, in a context of polyclonal hypergammaglobulinemia, the κ?:?λ ratio remains

References

[1]  C. A. Hutchison, S. Harding, P. Hewins et al., “Quantitative assessment of serum and urinary Polyclonal free light chains in patients with chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 6, pp. 1684–1690, 2008.
[2]  A. R. Bradwell, H. D. Carr-Smith, G. P. Mead et al., “Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine,” Clinical Chemistry, vol. 47, no. 4, pp. 673–680, 2001.
[3]  J. A. Katzmann, R. J. Clark, R. S. Abraham et al., “Serum reference intervals and diagnostic ranges for free κ and free λ immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains,” Clinical Chemistry, vol. 48, no. 9, pp. 1437–1444, 2002.
[4]  S. V. Rajkumar, R. A. Kyle, T. M. Therneau et al., “Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance,” Blood, vol. 106, no. 3, pp. 812–817, 2005.
[5]  M. Drayson, L. X. Tang, R. Drew, G. P. Mead, H. Carr-Smith, and A. R. Bradwell, “Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma,” Blood, vol. 97, no. 9, pp. 2900–2902, 2001.
[6]  R. S. Abraham, J. A. Katzmann, R. J. Clark, A. R. Bradwell, R. A. Kyle, and M. A. Gertz, “Quantitative analysis of serum free light chains: a new marker for the diagnostic evaluation of primary systemic amyloidosis,” The American Journal of Clinical Pathology, vol. 119, no. 2, pp. 274–278, 2003.
[7]  R. Aggarwal, W. Sequeira, R. Kokebie et al., “Serum free light chains as biomarkers for systemic lupus erythematosus disease activity,” Arthritis Care and Research, vol. 63, no. 6, pp. 891–898, 2011.
[8]  J.-E. Gottenberg, F. Aucouturier, J. Goetz et al., “Serum immunoglobulin free light chain assessment in rheumatoid arthritis and primary Sj?gren's syndrome,” Annals of the Rheumatic Diseases, vol. 66, no. 1, pp. 23–27, 2007.
[9]  J. A. Brebner and R. A. Stockley, “Polyclonal free light chains: a biomarker of inflammatory disease or treatment target?” F1000 Medicine Reports, vol. 5, article 4, 2013.
[10]  L. Chiche, J. M. Cournac, J. Mancini et al., “Normalization of serum-free light chains in patients with systemic lupus erythematosus upon rituximab treatment and correlation with biological disease activity,” Clinical Rheumatology, vol. 30, no. 5, pp. 685–689, 2011.
[11]  J.-E. Gottenberg, C. Miceli-Richard, B. Ducot, P. Goupille, B. Combe, and X. Mariette, “Markers of B-lymphocyte activation are elevated in patients with early rheumatoid arthritis and correlated with disease activity in the ESPOIR cohort,” Arthritis Research and Therapy, vol. 11, no. 4, article R114, 2009.
[12]  J. H. Stone, Y. Zen, and V. Deshpande, “Mechanisms of disease: IgG4-related disease,” The New England Journal of Medicine, vol. 366, no. 6, pp. 539–551, 2012.
[13]  K. Okazaki and H. Umehara, “Are classification criteria for IgG4-RD now possible? The concept of IgG4-related disease and proposal of comprehensive diagnostic criteria in Japan,” International Journal of Rheumatology, vol. 2012, Article ID 357071, 9 pages, 2012.
[14]  M. Ebbo, L. Daniel, M. Pavic et al., “IgG4-related systemic disease: features and treatment response in a French cohort: results of a multicenter registry,” Medicine, vol. 91, no. 1, pp. 49–56, 2012.
[15]  V. Deshpande, Y. Zen, J. K. Chan et al., “Consensus statement on the pathology of IgG4-related disease,” Modern Pathology, vol. 25, no. 9, pp. 1181–1192, 2012.
[16]  J. Tencer, H. Thysell, K. Andersson, and A. Grubb, “Long-term stability of albumin, protein HC, immunoglobulin G, κ- and λ-chain-immunoreactivity, orosomucoid and α1-antitrypsin in urine stored at -20°C,” Scandinavian Journal of Urology and Nephrology, vol. 31, no. 1, pp. 67–71, 1997.
[17]  F. Skvaril, A. Morell, and S. Barandun, “The IgG subclass distribution in 659 myeloma sera,” Vox Sanguinis, vol. 23, no. 6, pp. 546–551, 1972.
[18]  P. Aucouturier and J.-L. Preud'homme, “Subclass distribution of human myeloma proteins as determined with monoclonal antibodies,” Immunology Letters, vol. 16, no. 1, pp. 55–57, 1987.
[19]  A. Khosroshahi, L. A. Cheryk, M. Carruthers, J. A. Edwards, D. B. Bloch, and J. H. Stone, “Prozone phenomenon leads to low IgG4 concentrations in IgG4-related disease,” Arthritis & Rheumatism, vol. 64, 10, supplement, abstract 2527, 2012.
[20]  T. G. Kormelink, J. Tekstra, R. M. Thurlings et al., “Decrease in immunoglobulin free light chains in patients with rheumatoid arthritis upon rituximab (anti-CD20) treatment correlates with decrease in disease activity,” Annals of the Rheumatic Diseases, vol. 69, no. 12, pp. 2137–2144, 2010.
[21]  C. A. Hutchison, T. Plant, M. Drayson et al., “Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure,” BMC Nephrology, vol. 9, no. 1, article 11, 2008.
[22]  M. Yamamoto, H. Takahashi, T. Tabeya et al., “Risk of malignancies in IgG4-related disease,” Modern Rheumatology, vol. 22, no. 3, pp. 414–418, 2012.
[23]  G. Kanda, T. Ryu, T. Shirai et al., “Peripheral T-cell lymphoma that developed during the follow-up of IgG4-related disease,” Internal Medicine, vol. 50, no. 2, pp. 155–160, 2011.
[24]  Y. Sato, K. Ohshima, K. Takata et al., “Ocular adnexal IgG4-producing mucosa-associated lymphoid tissue lymphoma mimicking IgG4-related disease,” Journal of Clinical and Experimental Hematopathology, vol. 52, no. 1, pp. 51–55, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133