全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Alignment of Skeletal Muscle Cells Cultured in Collagen Gel by Mechanical and Electrical Stimulation

DOI: 10.1155/2014/621529

Full-Text   Cite this paper   Add to My Lib

Abstract:

For in vitro tissue engineering of skeletal muscle, alignment and fusion of the cultured skeletal muscle cells are required. Although the successful alignment of skeletal muscle cells cultured in collagen gel has been reported using a mechanical force, other means of aligning cultured skeletal muscle cells have not been described. However, skeletal muscle cells cultured in a two-dimensional dish have been reported to align in a uniform direction when electrically stimulated. The purpose of this study is to determine if skeletal muscle cells cultured three-dimensionally in collagen gels can be aligned by an electrical load. By adding direct current to cells of the C2C12 skeletal muscle cell line cultured in collagen gel, it was possible to align C2C12 cells in a similar direction. However, the ratio of alignment was better when mechanical force was used as the means of alignment. Thus for tissue engineering of skeletal muscle cells, electrical stimulation may be useful as a supplementary method. 1. Introduction In order to construct functional skeletal muscle in vitro for use in tissue engineering, it is important to align skeletal muscle cells in a uniform direction. In a three-dimensional (3D) collagen gel culture without any applied stress, skeletal muscle cells do not orient uniformly. Although some research groups have shown the alignment of skeletal muscle cells in collagen gel using mechanical force [1, 2], other means of aligning skeletal muscle cells in 3D culture have not been reported. In monolayer culture, the application of a direct current (DC) electrical field to muscle cells causes myoblast axes to orient perpendicular to the electrical current [3–8]. However, it has not been determined if skeletal muscle cells will align in a 3D collagen gel culture using a similar electrical load. Thus we cultured skeletal muscle cells three-dimensionally under either a mechanical load or an electrical load and compared the rate of alignment. 2. Materials and Methods 2.1. Skeletal Muscle Cells Mature murine myogenic cell line C2C12 cells were purchased from Riken Cell Bank (Tsukuba, Japan). The culture medium was Dulbecco’s modified essential medium (DMEM, Sigma, St. Louis) containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). 2.2. Mechanical and Electrical Load We made ring-shaped collagen gels containing C2C12 cells. Cells were suspended in 0.25% Trypsin/EDTA, centrifuged, and embedded in type I collagen gel solution (Cell-Matrix 3D cell culture kit, Nitta Gelatin Inc., Japan) at 3 × 105 cells/mL. The collagen gels were

References

[1]  H. H. Vandenburgh, S. Hatfaludy, P. Karlisch, and J. Shansky, “Skeletal muscle growth is stimulated by intermittent stretch-relaxation in tissue culture,” American Journal of Physiology, vol. 256, no. 3, part 1, pp. C674–C682, 1989.
[2]  M. S. Sakar, D. Neal, T. Boudou et al., “Formation and optogenetic control of engineered 3D skeletal muscle bioactuators,” Lab on a Chip, vol. 12, no. 23, pp. 4976–4985, 2012.
[3]  L. Hinkle, C. D. McCaig, and K. R. Robinson, “The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field,” Journal of Physiology, vol. 314, pp. 121–135, 1981.
[4]  K. R. Robinson, “The responses of cells to electrical fields: a review,” Journal of Cell Biology, vol. 101, no. 6, pp. 2023–2027, 1985.
[5]  S. Ahadian, S. Ostrovidov, V. Hosseini et al., “Electrical stimulation as a biomimicry tool for regulating muscle cell behavior,” Organogenesis, vol. 9, no. 2, pp. 87–92, 2013.
[6]  D. W. van der Schaft, A. C. van Spreeuwel, K. J. Boonen, M. L. Langelaan, C. V. Bouten, and F. P. Baaijens, “Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation,” Journal of Visualized Experiments, no. 73, article e4267, 2013.
[7]  S. Ahadian, J. Ramón-Azcón, S. Ostrovidov, et al., “Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue,” Lab on a Chip, vol. 12, no. 18, pp. 3491–3503, 2012.
[8]  M. Flaibani, L. Boldrin, E. Cimetta, M. Piccoli, P. De Coppi, and N. Elvassore, “Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation,” Tissue Engineering A, vol. 15, no. 9, pp. 2447–2457, 2009.
[9]  T. Okano, S. Satoh, T. Oka, and T. Matsuda, “Tissue engineering of skeletal muscle: highly dense, highly oriented hybrid muscular tissues biomimicking native tissues,” ASAIO Journal, vol. 43, no. 5, pp. M749–M753, 1997.
[10]  M. Poo and K. R. Robinson, “Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane,” Nature, vol. 265, no. 5595, pp. 602–605, 1977.
[11]  R. C. Strohman, E. Bayne, D. Spector, T. Obinata, J. Micou-Eastwood, and A. Maniotis, “Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro,” In Vitro Cellular and Developmental Biology, vol. 26, no. 2, pp. 201–208, 1990.
[12]  R. Shah, J. C. Knowles, N. P. Hunt, and M. P. Lewis, “Development of a novel smart scaffold for human skeletal muscle regeneration,” Journal of Tissue Engineering and Regenerative Medicin, 2013.
[13]  M. E. Kolewe, H. Park, C. Gray, X. Ye, R. Langer, and L. E. Freed, “3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture,” Advanced Materials, vol. 25, no. 32, pp. 4459–4465, 2013.
[14]  P. Y. Wang, T. H. Wu, W. B. Tsai, W. H. Kuo, and M. J. Wang, “Grooved PLGA films incorporated with RGD/YIGSR peptides for potential application on skeletal muscle tissue engineering,” Colloids and Surfaces B, vol. 110, pp. 88–95, 2013.
[15]  R. Shah, D. Ready, J. C. Knowles, N. P. Hunt, and M. P. Lewis, “Sequential identification of a degradable phosphate glass scaffold for skeletal muscle regeneration,” Journal of Tissue Engineering and Regenerative Medicine, 2012.
[16]  I. E. Palamà, A. M. Coluccia, G. Gigli, and M. Riehle, “Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials,” Integrative Biology, vol. 4, no. 10, pp. 1299–1309, 2012.
[17]  S. L. Hume, S. M. Hoyt, J. S. Walker et al., “Alignment of multi-layered muscle cells within three-dimensional hydrogel macrochannels,” Acta Biomaterialia, vol. 8, no. 6, pp. 2193–2202, 2012.
[18]  N. F. Huang, R. J. Lee, and S. Li, “Engineering of aligned skeletal muscle by micropatterning,” American Journal of Translational Research, vol. 2, no. 1, pp. 43–55, 2010.
[19]  P.-Y. Wang, H.-T. Yu, and W.-B. Tsai, “Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure,” Biotechnology and Bioengineering, vol. 106, no. 2, pp. 285–294, 2010.
[20]  I. C. Liao, J. B. Liu, N. Bursac, and K. W. Leong, “Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers,” Cellular and Molecular Bioengineering, vol. 1, no. 2-3, pp. 133–145, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133