全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Angiotensin-Converting Enzyme Gene Insertion/Deletion Polymorphism and Small Vessel Cerebral Stroke in Indian Population

DOI: 10.1155/2014/305309

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Hypertension is an established risk factor for small-vessel cerebral stroke and the renin-angiotensin system plays an important role in the maintenance of blood pressure. We aimed at evaluating the contribution of the angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism to the risk of small-vessel stroke in south Indian population. Materials and Methods. We investigated 128 patients diagnosed with small-vessel stroke and 236 age, and gender-matched healthy controls. ACE I/D polymorphism was detected by polymerase chain reaction. Results. Hypertension was significantly more prevalent in the patient group and was associated with 6-fold increase in risk for stroke. ACE genotypes were in Hardy-Weinberg equilibrium in both patients and controls. Prevalence of DD, ID, and II genotypes in cases (34.4%, 43.7%, and 28%) did not differ significantly from controls (31.8%, 43.2%, and 25%). The polymorphism was not associated with small-vessel stroke (OR: 1.34; 95% CI: 0.52–1.55). However, diastolic blood pressure was associated with the ACE I/D genotypes in the patients. (DD; ID; II; ?mm Hg, . Conclusion. Our study showed that hypertension, but not ACE I/D polymorphism, increased the risk of small-vessel stroke. 1. Introduction Brain infarction due to ischemia in the perforating arteries which supply the brain white and deep grey matter nuclei, also known as lacunar infarction or lacunar stroke, accounts for 20% to 25% of all ischemic strokes [1]. Lacunar infarct forms part of the spectrum of cerebral small-vessel disease (SVD) which affects the brain diffusely and is the commonest vascular cause of cognitive impairment [2]. The prevalence rate of stroke in India varies across regions. While the prevalence is 5.4 per 1000 persons in the eastern part of India [3], southern India has reported a prevalence of 1.36 per 1000 persons [4]. The Indian Collaborative Acute Stroke Study (ICASS), a recent multicenter study conducted among 2162 admitted stroke patients across India, observed ischemic stroke in 77%, hemorrhagic stroke in 22%, and unspecified stroke in 1% of cases [5]. Data from a hospital-based stroke registry from south India shows that, of all ischemic stroke patients, 41%, 18%, 10%, 4%, and 27% were classified as large-artery atherosclerosis, lacunae, cardioembolism, other determined etiology, and undetermined etiology, respectively [6]. Hypertension, diabetes, and smoking were the common risk factors among all the subtypes [7], similar to other populations. Hypertension is considered the foremost risk factor for lacunar

References

[1]  R. Behrouz, A. R. Malek, and M. T. Torbey, “Small vessel cerebrovascular disease: the past, present, and future,” Stroke Research and Treatment, vol. 2012, Article ID 839151, 8 pages, 2012.
[2]  S. Debette, A. Beiser, C. Decarli et al., “Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the framingham offspring study,” Stroke, vol. 41, no. 4, pp. 600–606, 2010.
[3]  S. K. Das, T. K. Banerjee, A. Biswas et al., “A prospective community-based study of stroke in Kolkata, India,” Stroke, vol. 38, no. 3, pp. 906–910, 2007.
[4]  M. Gourie-Devi, G. Gururaj, P. Satishchandra, and D. K. Subbakrishna, “Prevalence of neurological disorders in Bangalore, India: a community-based study with a comparison between urban and rural areas,” Neuroepidemiology, vol. 23, no. 6, pp. 261–268, 2004.
[5]  P. M. Dalal, “Burden of stroke: Indian perspective,” International Journal of Stroke, vol. 1, no. 3, pp. 164–166, 2006.
[6]  S. Kaul, P. Sunitha, A. Suvarna, A. K. Meena, M. Uma, and J. M. Reddy, “Subtypes of ischemic stroke in a metropolitan city of South India (one year data from a hospital based stroke registry),” Neurology India, vol. 50, pp. S8–S14, 2002.
[7]  P. M. Dalal, “Strokes in the elderly: prevalence, risk factors and the strategies for prevention,” Indian Journal of Medical Research, vol. 106, pp. 325–332, 1997.
[8]  H. S. Markus, J. Barley, R. Lunt et al., “Angiotensin-converting enzyme gene deletion polymorphism: a new risk factor for lacunar stroke but not carotid atheroma,” Stroke, vol. 26, no. 8, pp. 1329–1333, 1995.
[9]  K. Jood, C. Ladenvall, A. Rosengren, C. Blomstrand, and C. Jern, “Family history in ischemic stroke before 70 years of age: the Sahlgrenska academy study on ischemic stroke,” Stroke, vol. 36, no. 7, pp. 1383–1387, 2005.
[10]  B. Rigat, C. Hubert, F. Alhenc-Gelas, F. Cambien, P. Corvol, and F. Soubrier, “An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels,” Journal of Clinical Investigation, vol. 86, no. 4, pp. 1343–1346, 1990.
[11]  J. Pera, A. Slowik, T. Dziedzic, D. Wloch, and A. Szczudlik, “ACE I/D polymorphism in different etiologies of ischemic stroke,” Acta Neurologica Scandinavica, vol. 114, no. 5, pp. 320–322, 2006.
[12]  N. Tuncer, S. Tuglular, G. Kili?, A. Sazci, ?. Us, and I. Kara, “Evaluation of the angiotensin-converting enzyme insertion/deletion polymorphism and the risk of ischaemic stroke,” Journal of Clinical Neuroscience, vol. 13, no. 2, pp. 224–227, 2006.
[13]  H. P. Adams Jr., B. H. Bendixen, L. J. Kappelle et al., “Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial,” Stroke, vol. 24, no. 1, pp. 35–41, 1993.
[14]  B. Rigat, C. Hubert, P. Corvol, and F. Soubrier, “PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1),” Nucleic Acids Research, vol. 20, no. 6, p. 1433, 1992.
[15]  A. Munshi, S. Sultana, S. Kaul, B. P. Reddy, S. Alladi, and A. Jyothy, “Angiotensin-converting enzyme insertion/deletion polymorphism and the risk of ischemic stroke in a South Indian population,” Journal of the Neurological Sciences, vol. 272, no. 1-2, pp. 132–135, 2008.
[16]  Z. Szolnoki, A. Maasz, L. Magyari et al., “Coexistence of angiotensin II type-1 receptor A1166C and angiotensin-converting enzyme D/D polymorphism suggests susceptibility for small-vessel-associated ischemic stroke,” Neuromolecular Medicine, vol. 8, no. 3, pp. 353–360, 2006.
[17]  Z. Zhang, G. Xu, D. Liu, X. Fan, W. Zhu, and X. Liu, “Angiotensin-converting enzyme insertion/deletion polymorphism contributes to ischemic stroke risk: a meta-analysis of 50 case-control studies,” PLoS ONE, vol. 7, no. 10, Article ID e46495, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133