全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chronic NaHS Treatment Is Vasoprotective in High-Fat-Fed ApoE?/? Mice

DOI: 10.1155/2013/915983

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydrogen sulfide is emerging as an important mediator of vascular function that has antioxidant and cytoprotective effects. The aim of this study was to investigate the role of endogenous H2S and the effect of chronic exogenous H2S treatment on vascular function during the progression of atherosclerotic disease. ApoE?/? mice were fed a high-fat diet for 16 weeks and treated with the H2S donor NaHS or the cystathionine-γ-lyase (CSE) inhibitor D,L-propargylglycine (PPG), to inhibit endogenous H2S production for the final 4 weeks. Fat-fed ApoE?/? mice displayed significant aortic atherosclerotic lesions and significantly impaired endothelial function compared to wild-type mice. Importantly, 4 weeks of NaHS treatment significantly reduced vascular dysfunction and inhibited vascular superoxide generation. NaHS treatment significantly reduced the area of aortic atherosclerotic lesions and attenuated systolic blood pressure. Interestingly, inhibiting endogenous, CSE-dependent H2S production with PPG did not exacerbate the deleterious vascular changes seen in the untreated fat-fed ApoE?/? mice. The results indicate NaHS can improve vascular function by reducing vascular superoxide generation and impairing atherosclerotic lesion development. Endogenous H2S production via CSE is insufficient to counter the atherogenic effects seen in this model; however exogenous H2S treatment has a significant vasoprotective effect. 1. Introduction Hydrogen sulfide is a recently identified gasotransmitter reported to have numerous physiological effects in diverse processes including metabolism, inflammation, the nervous system, and the cardiovascular system [1]. The cardiovascular effects of this molecule are currently of major interest and include vascular relaxation, cardioprotection, and vasculoprotective effects [2, 3]. In mammalian cells, H2S is produced primarily by 2 pyridoxyl-5′-phosphate-dependent enzymes, cystathionine-β-synthase (CBS), and cystathionine-γ-lyase (CSE). Additionally, a role for 3-mercaptopyruvate sulfurtransferase in concert with cysteine aminotransferase has been identified in the vasculature [4]. With respect to vasoregulation, CSE is of particular interest as it is reported to be present in a range of vascular beds and its expression has been clearly identified in vascular smooth muscle cells. CSE has also been located in endothelial cells and additionally it is reported to contribute to endothelium-dependent vasorelaxation [5, 6]. Inhibition of CSE with the irreversible inhibitor D,L-propargylglycine (PPG) leads to an elevation of blood pressure in

References

[1]  R. Wang, “Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?” FASEB Journal, vol. 16, no. 13, pp. 1792–1798, 2002.
[2]  J. L. Hart, “Role of sulfur-containing gaseous substances in the cardiovascular system,” Frontiers in Bioscience, vol. 3, pp. 736–749, 2011.
[3]  E. Streeter, H. H. Ng, and J. L. Hart, “Hydrogen sulfide as a vasculoprotective factor,” Medical Gas Research, vol. 3, no. 1, p. 9, 2013.
[4]  N. Shibuya, Y. Mikami, Y. Kimura, N. Nagahara, and H. Kimura, “Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide,” Journal of Biochemistry, vol. 146, no. 5, pp. 623–626, 2009.
[5]  G. Yang, L. Wu, B. Jiang, et al., “H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase,” Science, vol. 322, no. 5901, pp. 587–590, 2008.
[6]  R. Wang, “Hydrogen sulfide: a new EDRF,” Kidney International, vol. 76, no. 7, pp. 700–704, 2009.
[7]  H. Yan, J. Du, and C. Tang, “The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 22–27, 2004.
[8]  M. R. Al-Magableh and J. L. Hart, “Mechanism of vasorelaxation and role of endogenous hydrogen sulfide production in mouse aorta,” Naunyn-Schmiedebergs Archives of Pharmacology, vol. 383, no. 4, pp. 403–413, 2011.
[9]  J. Fan and T. Watanabe, “Inflammatory reactions in the pathogenesis of atherosclerosis,” Journal of Ptherosclerosis and Thrombosis, vol. 10, no. 2, pp. 63–71, 2003.
[10]  C. Weber and H. Noels, “Atherosclerosis: current pathogenesis and therapeutic options,” Nature Medicine, vol. 17, no. 11, pp. 1410–1422, 2011.
[11]  C. P. Judkins, H. Diep, B. R. S. Broughton, et al., “Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in mice,” American Journal of Physiology, vol. 298, no. 1, pp. H24–H32, 2010.
[12]  E. G. Lynn and R. C. Austin, “Hydrogen sulfide in the pathogenesis of atherosclerosis and its therapeutic potential,” Expert Review of Clinical Pharmacology, vol. 4, no. 1, pp. 97–108, 2011.
[13]  J. Du, Y. Hui, Y. Cheung, et al., “The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells,” Heart and Vessels, vol. 19, no. 2, pp. 75–80, 2004.
[14]  G. Yang, L. Wu, and R. Wang, “Pro-apoptotic effect of endogenous H2S on human aorta smooth muscle cells,” FASEB Journal, vol. 20, no. 3, pp. 553–555, 2006.
[15]  H. Laggner, M. K. Muellner, S. Schreier, et al., “Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl,” Free Radical Research, vol. 41, no. 7, pp. 741–747, 2007.
[16]  S. Muzaffar, N. Shukla, M. Bond, et al., “Exogenous hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac1 activity in human vascular smooth muscle cells,” Journal of Vascular Research, vol. 45, no. 6, pp. 521–528, 2008.
[17]  Z. Z. Zhao, Z. Wang, G. H. Li, et al., “Hydrogen sulfide inhibits macrophage-derived foam cell formation,” Experimental Biology and Medicine, vol. 236, no. 2, pp. 169–176, 2011.
[18]  Y. Wang, X. Zhao, H. Jin, et al., “Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 2, pp. 173–179, 2009.
[19]  H. Zhang, C. Guo, D. Wu, et al., “Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression,” PLoS One, vol. 7, no. 7, article e41147, 2012.
[20]  G. Zagli, R. Patacchini, M. Trevisani, et al., “Hydrogen sulfide inhibits human platelet aggregation,” European Journal of Pharmacology, vol. 559, no. 1, pp. 65–68, 2007.
[21]  N. R. Sodha, R. T. Clements, J. Feng, et al., “Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury,” Journal of Thoracic and Cardiovascular Surgery, vol. 138, no. 4, pp. 977–984, 2009.
[22]  X. Zhao, L. K. Zhang, C. Y. Zhang, et al., “Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats,” Hypertension Research, vol. 31, no. 8, pp. 1619–1630, 2008.
[23]  W. S. Cheang, W. T. Wong, B. Shen, et al., “4-Aminopyridine-sensitive K+ channels contributes to NaHS-induced membrane hyperpolarization and relaxation in the rat coronary artery,” Vascular Pharmacology, vol. 53, no. 3-4, pp. 94–98, 2010.
[24]  S. W. Lee, Y. Cheng, P. K. Moore, and J. S. Bian, “Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 418, no. 4, pp. 1142–1147, 2012.
[25]  L. Kiss, E. A. Deitch, and C. Szabo, “Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition,” Life Sciences, vol. 83, no. 17-18, pp. 589–594, 2008.
[26]  E. Streeter, J. Hart, and E. Badoer, “An investigation of the mechanisms of hydrogen sulfide-induced vasorelaxation in rat middle cerebral arteries,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 385, no. 10, pp. 991–1002, 2012.
[27]  W. Zhao and R. Wang, “H2S-induced vasorelaxation and underlying cellular and molecular mechanisms,” American Journal of Physiology, vol. 283, no. 2, pp. H474–H480, 2002.
[28]  Y. Cheng, J. F. Ndisang, G. Tang, K. Cao, and R. Wang, “Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats,” American Journal of Physiology, vol. 287, no. 5, pp. H2316–H2323, 2004.
[29]  C. H. Leo, A. Joshi, J. L. Hart, and O. L. Woodman, “Endothelium-dependent nitroxylmediated relaxation is resistant to superoxide anion scavenging and preserved in diabetic rat aorta,” Pharmacological Research, vol. 66, no. 5, pp. 383–391, 2012.
[30]  C. H. Leo, J. L. Hart, and O. L. Woodman, “3′,4′-dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries,” PLoS ONE, vol. 6, no. 6, article e20813, 2011.
[31]  W. Zhao, J. Zhang, Y. Lu, and R. Wang, “The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener,” EMBO Journal, vol. 20, no. 21, pp. 6008–6016, 2001.
[32]  O. Jackson-Weaver, J. Osmond, M. A. Riddle, et al., “Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca2+-activated K+channels and smooth muscle Ca2+ sparks,” American Journal of Physiology, vol. 304, no. 11, pp. H1446–H1454, 2013.
[33]  G. H. Liang, Q. Xi, C. W. Leffler, and J. H. Jaggar, “Hydrogen sulfide activates Ca2+ sparks to induce cerebral arteriole dilatation,” The Journal of Physiology, vol. 590, no. 11, pp. 2709–2720, 2012.
[34]  M. Bucci, A. Papapetropoulos, V. Vellecco, et al., “Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 10, pp. 1998–2004, 2010.
[35]  M. Bucci, A. Papapetropoulos, V. Vellecco, et al., “cGMPDependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation,” PLoS One, vol. 7, no. 12, article e53319, 2012.
[36]  G. J. Waldron, H. Ding, F. Lovren, P. Kubes, and C. R. Triggle, “Acetylcholine-induced relaxation of peripheral arteries isolated from mice lacking endothelial nitric oxide synthase,” British Journal of Pharmacology, vol. 128, no. 3, pp. 653–658, 1999.
[37]  S. Carballal, M. Trujillo, E. Cuevasanta, et al., “Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest,” Free Radical Biology and Medicine, vol. 50, no. 1, pp. 196–205, 2011.
[38]  A. Stasko, V. Brezova, M. Zalibera, S. Biskupic, and K. Ondrias, “Electron transfer: a primary step in the reactions of sodium hydrosulphide, an H2S/HS- donor,” Free Radical Research, vol. 43, no. 6, pp. 581–593, 2009.
[39]  M. Whiteman, J. S. Armstrong, S. H. Chu, et al., “The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’?” Journal of Neurochemistry, vol. 90, no. 3, pp. 765–768, 2004.
[40]  S. K. Yan, T. Chang, H. Wang, L. Wu, R. Wang, and Q. H. Meng, “Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 351, no. 2, pp. 485–491, 2006.
[41]  M. Lu, L. F. Hu, G. Hu, and J. S. Bian, “Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake,” Free Radical Biology and Medicine, vol. 45, no. 12, pp. 1705–1713, 2008.
[42]  M. Whiteman, N. S. Cheung, Y. Z. Zhu, et al., “Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain?” Biochemical and Biophysical Research Communications, vol. 326, no. 4, pp. 794–798, 2005.
[43]  S. Kobayashi, N. Inoue, H. Azumi, et al., “Expressional changes of the vascular antioxidant system in atherosclerotic coronary arteries,” Journal of Atherosclerosis and Thrombosis, vol. 9, no. 4, pp. 184–190, 2002.
[44]  W. G. Land, “Emerging role of innate immunity in organ transplantation—part I: evolution of innate immunity and oxidative allograft injury,” Transplantation Reviews, vol. 26, no. 2, pp. 60–72, 2012.
[45]  R. P. Brandes, N. Weissmann, and K. Schr?der, “NADPH oxidases in cardiovascular disease,” Free Radical Biology and Medicine, vol. 49, no. 5, pp. 687–706, 2010.
[46]  S. Muzaffar, J. Y. Jeremy, A. Sparatore, P. Del Soldato, G. D. Angelini, and N. Shukla, “H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: role of protein kinases A and G,” British Journal of Pharmacology, vol. 155, no. 7, pp. 984–994, 2008.
[47]  K. Fukao, K. Shimada, H. Naito, et al., “Voluntary exercise ameliorates the progression of atherosclerotic lesion formation via anti-inflammatory effects in apolipoprotein E-deficient mice,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 12, pp. 1226–1236, 2010.
[48]  A. Vinh, R. E. Widdop, S. Y. Chai, and T. A. Gaspari, “Angiotensin IV-evoked vasoprotection is conserved in advanced atheroma,” Atherosclerosis, vol. 200, no. 1, pp. 37–44, 2008.
[49]  S. Tesanovic, A. Vinh, T. A. Gaspari, D. Casley, and R. E. Widdop, “Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 8, pp. 1606–1613, 2010.
[50]  A. Vinh, R. E. Widdop, G. R. Drummond, and T. A. Gaspari, “Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice,” Cardiovascular Research, vol. 77, no. 1, pp. 178–187, 2008.
[51]  C. Szab?, “Hydrogen sulphide and its therapeutic potential,” Nature Reviews Drug Discovery, vol. 6, no. 11, pp. 917–935, 2007.
[52]  R. Konno, M. Ikeda, K. Yamaguchi, Y. Ueda, and A. Niwa, “Nephrotoxicity of D-propargylglycine in mice,” Archives of Toxicology, vol. 74, no. 8, pp. 473–479, 2000.
[53]  E. R. Deleon, G. F. Stoy, and K. R. Olson, “Passive loss of hydrogen sulfide in biological experiments,” Analytical Biochemistry, vol. 421, no. 1, pp. 203–207, 2012.
[54]  L. Li, M. Whiteman, Y. Y. Guan, et al., “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation, vol. 117, no. 18, pp. 2351–2360, 2008.
[55]  K. R. Olson, “A practical look at the chemistry and biology of hydrogen sulfide,” Antioxid Redox Signal, vol. 17, no. 1, pp. 32–44, 2012.
[56]  B. D. Paul and S. H. Snyder, “H2S signalling through protein sulfhydration and beyond,” Nature Reviews Molecular Cell Biology, vol. 13, no. 8, pp. 499–507, 2012.
[57]  J. W. Calvert, W. A. Coetzee, and D. J. Lefer, “Novel insights into hydrogen sulfide-mediated cytoprotection,” Antioxidants and Redox Signaling, vol. 12, no. 10, pp. 1203–1217, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413