全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sensory Systems and Environmental Change on Behavior during Social Interactions

DOI: 10.1155/2013/573802

Full-Text   Cite this paper   Add to My Lib

Abstract:

The impact of environmental conditions for transmitting sensory cues and the ability of crayfish to utilize olfaction and vision were examined in regards to social interactive behavior. The duration and intensity of interactions were examined for conspecific crayfish with different sensory abilities. Normally, vision and chemosensory have roles in agonistic communication of Procambarus clarkii; however, for the blind cave crayfish (Orconectes australis packardi), that lack visual capabilities, olfaction is assumed to be the primary sensory modality. To test this, we paired conspecifics in water and out of water in the presence and absence of white light to examine interactive behaviors when these various sensory modalities are altered. For sighted crayfish, in white light, interactions occurred and escalated; however, when the water was removed, interactions and aggressiveness decreased, but, there was an increase in visual displays out of the water. The loss of olfaction abilities for blind cave and sighted crayfish produced fewer social interactions. The importance of environmental conditions is illustrated for social interactions among sighted and blind crayfish. Importantly, this study shows the relevance in the ecological arena in nature for species survival and how environmental changes disrupt innate behaviors. 1. Introduction Social relationships may take many forms when organisms live in a group, and often times, the individuals must determine their status within a social structure [1–3]. Social dominance is a form of a social relationship in which individuals aggressively interact repeatedly. The interaction between individuals is a well-studied sequential series of interactions, with each individual having the option of terminating or continuing the interaction/contest at any time. The consequence of these interactions most likely results in a dominant individual who repeatedly wins encounters against a subordinate [3]. Therefore, agonistic encounters will generally establish social hierarchies between individuals in a population [4–9]. Dominance hierarchies are known to decrease aggressive interactions between individuals based upon social status, therefore stabilizing the population over time [10, 11]. Smith [12] suggests that rank may be a strategy individuals adopt to maximize fitness in the population based upon the role of other individuals. This correlates with the established Barnard and Sibly [13] producer-scrounger game in which mixes of strategies work better than all one or the other of a specific strategy. There are obvious

References

[1]  W. C. Allee and R. H. Masure, “A comparison of maze behavior in paired and isolated shellparrakeets (Melopsittacus undulatus Shaw) in a two-alley problem box,” Journal of Comparative Psychology, vol. 22, no. 1, pp. 131–155, 1936.
[2]  T. E. Rowell, “The concept of social dominance,” Behavioral Biology, vol. 11, no. 2, pp. 131–154, 1974.
[3]  C. Drews, “The concept and definition of dominance in animal behavior,” Behavior, vol. 125, pp. 283–313, 1993.
[4]  R. V. Bovbjerg, “Dominance order in the crayfish Orconectes virilis (Hagen),” Physiological Zoology, vol. 26, pp. 173–178, 1953.
[5]  R. V. Bovbjerg, “Some factors affecting aggressive behavior in crayfish,” Physiological Zoology, vol. 29, pp. 127–136, 1956.
[6]  R. Huber, K. Smith, A. Delago, K. Isaksson, and E. A. Kravitz, “Serotonin and aggressive motivation in crustaceans: altering the decision to retreat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 11, pp. 5939–5942, 1997.
[7]  F. A. Issa, D. J. Adamson, and D. H. Edwards, “Dominance hierarchy formation in juvenile crayfish Procambarus clarkii,” Journal of Experimental Biology, vol. 202, no. 24, pp. 3497–3506, 1999.
[8]  C. Goessmann, C. Hemelrijk, and R. Huber, “The formation and maintenance of crayfish hierarchies: behavioral and self-structuring properties,” Behavioral Ecology and Sociobiology, vol. 48, no. 6, pp. 418–428, 2000.
[9]  H. Li, L. R. Listeman, D. Doshi, and R. L. Cooper, “Heart rate measures in blind cave crayfish during environmental disturbances and social interactions,” Comparative Biochemistry and Physiology, vol. 127, no. 1, pp. 55–70, 2000.
[10]  A. Lomnicki, Population Ecology of Individuals, Princeton University Press, Princeton, NJ, USA, 1988.
[11]  N. Jiménez-Morales, A. R. Espinoza, K. Mendoza-Angeles, G. Roldán, and J. Hernandez-Falcon, “Memory and social interactions in crayfish,” in Neuroscience Meeting Planner, Society for Neuroscience, New Orleans, La, USA, 2012.
[12]  J. M. Smith, Evolution and the Theory of Games, Cambridge University Press, Cambridge, UK, 1982.
[13]  C. J. Barnard and R. M. Sibly, “Producers and scroungers: a general model and its application to captive flocks of house sparrows,” Animal Behaviour, vol. 29, no. 2, pp. 543–550, 1981.
[14]  N. E. Collias, “Statistical analysis of factors which make for success in initial encounters between hens,” American Naturalist, vol. 77, pp. 519–538, 1943.
[15]  C. Barrette and D. Vandal, “Social rank, dominance, antler size, and access to food in snow-bound wild woodland caribou,” Behaviour, vol. 97, no. 1-2, pp. 118–146, 1986.
[16]  S. A. Frank, “Hierarchical selection theory and sex ratios I. General solutions for structured populations,” Theoretical Population Biology, vol. 29, no. 3, pp. 312–342, 1986.
[17]  J. Stahl, P. H. Tolsma, M. J. J. E. Loonen, and R. H. Drent, “Subordinates explore but dominants profit: resource competition in high arctic barnacle goose flocks,” Animal Behaviour, vol. 61, no. 1, pp. 257–264, 2001.
[18]  B. Sklepkovych, “The influence of kinship on foraging competition in Siberian jays,” Behavioral Ecology and Sociobiology, vol. 40, no. 5, pp. 287–296, 1997.
[19]  M. H. Figler, H. M. Cheverton, and G. S. Blank, “Shelter competition in juvenile red swamp crayfish (Procambarus clarkii): the influences of sex differences, relative size, and prior residence,” Aquaculture, vol. 178, no. 1-2, pp. 63–75, 1999.
[20]  S. Rohwer and P. W. Ewald, “The cost of dominance and advantage of subordination in a badge signaling system,” Evolution, vol. 35, pp. 441–454, 1981.
[21]  A. J. Hansen, “Fighting behavior in bald eagles: a test of game theory,” Ecology, vol. 67, no. 3, pp. 787–797, 1986.
[22]  P. L. Rutherford, D. W. Dunham, and V. Alllison, “Antennule use and agonistic success in the crayfish Orconectes rusticus (Girard, 1852) (Decapoda, Cambaridae),” Crustaceana, vol. 69, pp. 117–122, 1996.
[23]  R. A. Zulandt Schneider, R. W. S. Schneider, and P. A. Moore, “Recognition of dominance status by chemoreception in the red swamp crayfish, Procambarus clarkii,” Journal of Chemical Ecology, vol. 25, no. 4, pp. 781–794, 1999.
[24]  C. A. Bruski and D. W. Dunham, “The importance of vision in agonistic communication of the crayfish Orconectes rusticus. I. An analysis of bout dynamics,” Behaviour, vol. 103, no. 1–3, pp. 83–107, 1987.
[25]  M. R. Smith and D. W. Dunham, “Chela posture and vision: compensation for sensory deficit in the crayfish Orconectes propinquus (Girard) (Decapoda, Cambaridae),” Crustaceana, vol. 59, pp. 309–313, 1990.
[26]  R. V. Bovbjerg, “Ecological isolation and competitive exclusion in two crayfish (Orconectes virilis and Orconectes immunis),” Ecology, vol. 51, pp. 225–236, 1970.
[27]  E. A. Kravitz, S. Glusman, R. M. Harris-Warrick, M. S. Livingstone, T. Schwarz, and M. F. Goy, “Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies,” Journal of Experimental Biology, vol. 89, pp. 159–175, 1980.
[28]  J. Crane, “Combat, display and ritualization in fiddler crabs (Ocypodidae, Genus Uca),” Philosophical Transactions of the Royal Society B, vol. 251, no. 772, pp. 459–472, 1966.
[29]  H. O. Wright, “Visual displays in brachyuran crabs: field and laboratory studies,” Integrative and Comparative Biology, vol. 8, no. 3, pp. 655–665, 1968.
[30]  G. W. Hyatt and M. Salmon, “Comparative statistical and information analysis of combat in the fiddler crabs, Uca pugilator and U. pugnax,” Behavior, vol. 68, pp. 1–23, 1979.
[31]  B. A. Hazlett and W. H. Bossert, “A statistical analysis of the aggressive communications systems of some hermit crabs,” Animal Behaviour, vol. 13, no. 2-3, pp. 357–373, 1965.
[32]  B. A. Hazlett, “Shell fighting and sexual behaviour in the hermit crab genera Paguristes and Calcinus with comments on Pagurus,” Bulletin of Marine Science, vol. 22, pp. 806–823, 1972.
[33]  P. J. Dunham, “Effect of chela white on agonistic success in a Diogenid hermit crab (Calcinus laevimanus),” Marine Behavior and Physiology, vol. 5, pp. 137–144, 1978.
[34]  P. J. Dunham, “Sex pheromones in Crustacea,” Biological Review, vol. 53, pp. 555–583, 1978.
[35]  D. W. Dunham and A. J. Tierney, “The communicative cost of crypsis in a hermit crab Pagurus marshi,” Animal Behaviour, vol. 31, no. 3, pp. 783–785, 1983.
[36]  J. C. E. Scrivener, “Agonistic behavior of the American lobster, Homarus americanus (Mime-Edwards),” Fish Research Board Canada Techical Report 235, 1971.
[37]  H. Dingle, “A statistical and information analysis of aggressive communication in the mantis shrimp Gonodactylus bredini Manning,” Animal Behaviour, vol. 17, no. 3, pp. 561–575, 1969.
[38]  A. R. Tilden, R. Brauch, R. Ball et al., “Modulatory effects of melatonin on behavior, hemolymph metabolites, and neurotransmitter release in crayfish,” Brain Research, vol. 992, no. 2, pp. 252–262, 2003.
[39]  R. L. Cooper, H. Li, L. Y. Long, J. L. Cole, and H. L. Hopper, “Anatomical comparisons of neural systems in sighted epigean and troglobitic crayfish species,” Journal of Crustacean Biology, vol. 21, no. 2, pp. 360–374, 2001.
[40]  H. Li and R. L. Cooper, “The effect of ambient light on blind cave crayfish: social interactions,” Journal of Crustacean Biology, vol. 22, no. 2, pp. 449–458, 2002.
[41]  T. Eisner and J. Meinwald, Chemical Ecology, National Academic Press, Washington, DC, USA, 1995.
[42]  J. W. Bradbury and S. L. Vehrencamp, “Animal communication,” in Encyclop?dia Britannica, 2009, http://www.britannica.com/EBchecked/topic/25653/animal-communication.
[43]  A. J. Tierney and D. W. Dunham, “Chemical communication in the reproductive isolation of the crayfishes Orconectes propinquus and Orconectes virilis (Decapoda, Cambaridae),” Journal of Crustacean Biology, vol. 2, pp. 544–548, 1982.
[44]  R. A. Zulandt Schneider and P. A. Moore, “Urine as a source of conspecific disturbance signals in the crayfish Procambarus clarkii,” Journal of Experimental Biology, vol. 203, no. 4, pp. 765–771, 2000.
[45]  T. Breithaupt and J. Petra, “Evidence for the use of urine signals in agonistic interactions of the American lobster,” Biological Bulletin, vol. 185, pp. 318–323, 2003.
[46]  B. A. Hazlett, “‘individual’ recognition and agonistic behaviour in pagurus bernhardus,” Nature, vol. 222, no. 5190, pp. 268–269, 1969.
[47]  F. Gherardi and J. Atema, “Memory of social partners in hermit crab dominance,” Ethology, vol. 111, no. 3, pp. 271–285, 2005.
[48]  F. Gherardi and J. Tiedemann, “Binary individual recognition in hermit crabs,” Behavioral Ecology and Sociobiology, vol. 55, no. 6, pp. 524–530, 2004.
[49]  M. Vannini and F. Gherardi, “Dominance and individual recognition in Potamon fluviatile (Decapoda, Brachyura) possible role of visual cues,” Marine Behavior and Physiology, vol. 8, pp. 13–20, 1981.
[50]  R. L. Caldwell, “Cavity occupation and defensive behaviour in the stomatopod Gonodactylus festai: evidence for chemically mediated individual recognition,” Animal Behaviour, vol. 27, no. 1, pp. 194–201, 1979.
[51]  R. L. Caldwell, “A test of individual recognition in the stomatopod Gonodactylus festate,” Animal Behaviour, vol. 33, no. 1, pp. 101–106, 1985.
[52]  C. Karavanich and J. Atema, “Individual recognition and memory in lobster dominance,” Animal Behaviour, vol. 56, no. 6, pp. 1553–1560, 1998.
[53]  M. Lowe, “Dominance-subordinance relationships in the crawfish Cambarellus shufeldtii,” Tulane Studies Zoology, vol. 4, pp. 139–170, 1956.
[54]  J. L. Hurst, “Urine marking in populations of wild house mice Mus domesticus rutty. II. Communication between females,” Animal Behaviour, vol. 40, no. 2, pp. 223–232, 1990.
[55]  J. L. Hurst, “Urine marking in populations of wild house mice Mus domesticus rutty. I. Communication between males,” Animal Behaviour, vol. 40, no. 2, pp. 209–222, 1990.
[56]  J. L. Hurst, “Urine marking in populations of wild house mice Mus domesticus Rutty. III. Communication between the sexes,” Animal Behaviour, vol. 40, no. 2, pp. 233–243, 1990.
[57]  J. Atema and M. A. Steinbach, “Chemical communication and social behavior of the lobster, Homarus americanus, and other Decapod Crustacea,” in Evolutionary Ecology of Social and Sexual Systems: Crustaceans as Model Organisms, J. E. Duffy and M. Thiel, Eds., pp. 115–144, Oxford University Press, New York, NY, USA, 2007.
[58]  C. Ameyaw-Akumfi and B. A. Hazlett, “Sex recognition in the crayfish Procambarus clarkii,” Science, vol. 190, no. 4220, pp. 1225–1226, 1975.
[59]  J. H. Thorp and K. S. Ammerman, “Chemical communication and agonism in the crayfish Procambarus acutus acutus,” American Midland Naturlist, vol. 100, pp. 471–474, 1978.
[60]  D. V. Devine and J. Atema, “Function of chemoreceptor organs in spatial orientation of the lobster, Homarus americanus: differences and overlap,” Biological Bulletin, vol. 163, no. 1, pp. 144–153, 1982.
[61]  C. Karavanich and J. Atema, “Olfactory recognition of urine signals in dominance fights between male lobster, Homarus americanus,” Behaviour, vol. 135, no. 6, pp. 719–730, 1998.
[62]  G. M. Capelli and P. A. Hamilton, “Effects of food and shelter on aggressive activity in the crayfish Orconectes rusticus (Girard),” Journal of Crustacean Biology, vol. 4, pp. 252–260, 1984.
[63]  H. V. S. Peeke, J. Sippel, and M. H. Figler, “Prior residence effects in shelter defense in adult signal crayfish (Pacifastacus leniusculus (Dana)): results in same- and mixed-sex dyads,” Crustaceana, vol. 68, no. 7, pp. 873–881, 1995.
[64]  R. A. Zulandt Schneider, R. Huber, and P. A. Moore, “Individual and status recognition in the crayfish, Orconectes rusticus: the effects of urine release on fight dynamics,” Behaviour, vol. 138, no. 2, pp. 137–153, 2001.
[65]  A. M. Hill and D. M. Lodge, “Replacement of resident crayfishes by an exotic crayfish: the roles of competition and predation,” Ecological Applications, vol. 9, no. 2, pp. 678–690, 1999.
[66]  G. M. Capelli and B. L. Munjal, “Aggressive interactions and resource competition in relation to species displacement among crayfish of the genus orconectes,” Journal of Crustacean Biology, vol. 2, no. 4, pp. 486–492, 1982.
[67]  B. D. Hazlett, D. Rubenstein, and D. Rittschof, “Starvation, energy reserves, and aggression in the crayfish,” Orconectes Virilis (Hagen), Crustaceana, vol. 28, pp. 11–16, 1975.
[68]  A. M. Stocker and R. Huber, “Fighting strategies in crayfish Orconectes rusticus (Decapoda, Cambaridae) differ with hunger state and the presence of food cues,” Ethology, vol. 107, no. 8, pp. 727–736, 2001.
[69]  A. T. Gannon, V. G. Demarco, T. Morris, M. G. Wheatly, and Y. H. Kao, “Oxygen uptake, critical oxygen tension, and available oxygen for three species of cave crayfishes,” Journal of Crustacean Biology, vol. 19, no. 2, pp. 235–243, 1999.
[70]  E. A. Caine, “A comparative ecology of epigean and hypogean crayfish (Crustacea: Cambaridae) from northwestern Florida,” American Midland Naturalist, vol. 99, pp. 315–329, 1978.
[71]  P. W. Hochachka, Living without Oxygen: Closed and Open Systems in Hypoxia Tolerance, Harvard University Press, Cambridge, Mass, USA, 1980.
[72]  K. Hüppop, “The role of metabolism in the evolution of cave animals,” The National Speleological Society Bulletin, vol. 47, pp. 136–146, 1985.
[73]  D. C. Culver, Cave Life. Evolution and Ecology, Harvard University Press, Cambridge, Mass, USA, 1982.
[74]  H. Dingle and R. L. Caldwell, “The aggressive and territorial behaviour of the mantis shrimp Gonodactylus bredini manning (crustacea: stomatopoda),” Behaviour, vol. 33, no. 1, pp. 115–136, 1969.
[75]  L. R. Listerman, J. Deskins, H. Bradacs, and R. L. Cooper, “Heart rate within male crayfish: social interactions and effects of 5-HT,” Comparative Biochemistry and Physiology, vol. 125, no. 2, pp. 251–263, 2000.
[76]  H. Schapker, T. Breithaupt, Z. Shuranova, Y. Burmistrov, and R. L. Cooper, “Heart and ventilatory measures in crayfish during environmental disturbances and social interactions,” Comparative Biochemistry and Physiology, vol. 131, no. 2, pp. 397–407, 2002.
[77]  S. M. Bierbower and R. L. Cooper, “Measures of heart and ventilatory rates in freely moving crayfish,” Journal of Visualized Experiments, vol. 32, article e1594, 2009.
[78]  J. L. Wilkens, A. J. Mercier, and J. Evans, “Cardiac and ventilatory responses to stress and to neurohormonal modulators by the shore crab, Carcinus maenas,” Comparative Biochemistry and Physiology C, vol. 82, no. 2, pp. 337–343, 1985.
[79]  C. Ameyaw-Akumfi, “Appeasement displays in cambarid crayfish (Decapoda, Astacoidea),” Crustaceana, vol. 5, pp. 135–141, 1979.
[80]  R. J. Paxton, P. F. Kukuk, and J. Teng?, “Effects of familiarity and nestmate number on social interactions in two communal bees, Andrena scotica and Panurgus calcaratus (Hymenoptera, Andrenidae),” Insectes Sociaux, vol. 46, no. 2, pp. 109–118, 1999.
[81]  L. A. Halling, B. P. Oldroyd, W. Wattanachaiyingcharoen, A. B. Barron, P. Nanork, and S. Wongsiri, “Worker policing in the bee Apis florea,” Behavioral Ecology and Sociobiology, vol. 49, no. 6, pp. 509–513, 2001.
[82]  M. Beye, P. Neumann, M. Chapuisat, P. Pamilo, and R. F. A. Moritz, “Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis,” Behavioral Ecology and Sociobiology, vol. 43, no. 1, pp. 67–72, 1998.
[83]  E. Nowbahari, R. Feneron, and M. C. Malherbe, “Effect of body size on aggression in the ant, Cataglyphis niger (hymenoptera, formicidae),” Aggressive Behavior, vol. 25, pp. 369–379, 1999.
[84]  W. D. Brown, C. Liautard, and L. Keller, “Sex-ratio dependent execution of queens in polygynous colonies of the ant Formica exsecta,” Oecologia, vol. 134, no. 1, pp. 12–17, 2003.
[85]  J. M. Polizzi and B. T. Forschler, “Factors that affect aggression among the worker caste of Reticulitermes spp. Subterranean termites (Isoptera: Rhinotermitidae),” Journal of Insect Behavior, vol. 12, no. 2, pp. 133–146, 1999.
[86]  J. Ruther, S. Sieben, and B. Schricker, “Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet,” Naturwissenschaften, vol. 89, no. 3, pp. 111–114, 2002.
[87]  B. L. Antonsen and D. H. Paul, “Serotonin and octopamine elicit stereotypical agonistic behaviors in the squat lobster Munida quadrispina (Anomura, Galatheidae),” Journal of Comparative Physiology A, vol. 181, no. 5, pp. 501–510, 1997.
[88]  M. S. Livingstone, R. M. Harris-Warrick, and E. A. Kravitz, “Serotonin and octopamine produce opposite postures in lobsters,” Science, vol. 208, no. 4439, pp. 76–79, 1980.
[89]  H. V. S. Peeke, G. S. Blank, M. H. Figler, and E. S. Chang, “Effects of exogenous serotonin on a motor behavior and shelter competition in juvenile lobsters (Homarus americanus),” Journal of Comparative Physiology A, vol. 186, no. 6, pp. 575–582, 2000.
[90]  S. B. Doernberg, S. I. Cromarty, R. Heinrich, B. S. Beltz, and E. A. Kravitz, “Agonistic behavior in na?ve juvenile lobsters depleted of serotonin by 5,7-dihydroxytryptamine,” Journal of Comparative Physiology A, vol. 187, no. 2, pp. 91–103, 2001.
[91]  L. U. Sneddon, A. C. Taylor, F. A. Huntingford, and D. G. Watson, “Agonistic behaviour and biogenic amines in shore crabs Carcinus maenas,” Journal of Experimental Biology, vol. 203, no. 3, pp. 537–545, 2000.
[92]  R. Huber, A. G. Daws, S. B. Tuttle, and J. B. Panksepp, “Quantitative techniques for the study of crustacean aggression,” in The Crustacean Nervous System, K. Wiese, Ed., pp. 186–203, Springer, Berlin, Germany, 2001.
[93]  L. Schroeder and R. Huber, “Fight strategies differ with size and allometric growth of claws in crayfish, Orconectes rusticus,” Behaviour, vol. 138, no. 11-12, pp. 1437–1449, 2001.
[94]  J. B. Panksepp and R. Huber, “Chronic alterations in serotonin function: dynamic neurochemical properties in agonistic behavior of the crayfish, Orconectes rusticus,” Journal of Neurobiology, vol. 50, no. 4, pp. 276–290, 2002.
[95]  E. A. Kravitz and R. Huber, “Aggression in invertebrates,” Current Opinion in Neurobiology, vol. 13, no. 6, pp. 736–743, 2003.
[96]  D. A. Bergman and P. A. Moore, “Field observations of intraspecific agonistic behavior of two crayfish species, Orconectes rusticus and Orconectes virilis, in different habitats,” Biological Bulletin, vol. 205, no. 1, pp. 26–35, 2003.
[97]  J. Haller and C. Wittenberger, “Biochemical energetics of hierarchy formation in Betta splendens,” Physiology and Behavior, vol. 43, no. 4, pp. 447–450, 1988.
[98]  J. Haller, “Muscle metabolic changes during the first six hours of cohabitation in pairs of male Betta splendens,” Physiology and Behavior, vol. 49, no. 6, pp. 1301–1303, 1991.
[99]  K. E. Thorpe, A. C. Taylor, and F. A. Huntingford, “How costly is fighting? Physiological effects of sustained exercise and fighting in swimming crabs, Necora puber (L.) (Brachyura, Portunidae),” Animal Behaviour, vol. 50, no. 6, pp. 1657–1666, 1995.
[100]  J. R. P. Halperin, T. Giri, J. Elliott, and D. W. Dunham, “Consequences of hyper-aggressiveness in Siamese fighting fish: cheaters seldom prospered,” Animal Behaviour, vol. 55, no. 1, pp. 87–96, 1998.
[101]  F. C. Neat, A. C. Taylor, and F. A. Huntinford, “Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism,” Animal Behavior, vol. 55, pp. 875–882, 1998.
[102]  S. N. Austad, “A game theoretical interpretation of male combat in the bowl and doily spider (Frontinella pyramitela),” Animal Behaviour, vol. 31, no. 1, pp. 59–73, 1983.
[103]  B. Gottfried, K. Andrews, and M. Haug, “Breeding robins and nest predators: effect of predator type and defense strategy on initial vocalization patterns,” Wilson Bulletin, vol. 97, pp. 183–190, 1985.
[104]  J. G. M. Robertson, “Male territoriality, fighting and assessment of fighting ability in the Australian frog Uperoleia rugosa,” Animal Behaviour, vol. 34, no. 3, pp. 763–772, 1986.
[105]  M. A. McPeek and P. H. Crowley, “The effects of density and relative size on the aggressive behaviour, movement and feeding of damselfly larvae (Odonata: Coenagrionidae),” Animal Behaviour, vol. 35, no. 4, pp. 1051–1061, 1987.
[106]  P. H. Crowley, S. Gillett, and J. H. Lawton, “Contests between larval damselflies: empirical steps toward a better ESS model,” Animal Behaviour, vol. 36, no. 5, pp. 1496–1510, 1988.
[107]  R. Huber and E. A. Kravitz, “A quantitative analysis of agonistic behavior in juvenile American lobsters (Homarus americanus L.),” Brain, Behavior and Evolution, vol. 46, no. 2, pp. 72–83, 1995.
[108]  D. I. Rubenstein and B. A. Hazlett, “Examination of the agonistic behaviour of the crayfish Orconectes virilis by character analysis,” Behavior, vol. 50, no. 3-4, pp. 193–216, 1974.
[109]  A. G. Daws, J. Grills, K. Konzen, and P. A. Moore, “Previous experiences alter the outcome of aggressive interactions between males in the crayfish, Procambarus clarkii,” Marine and Freshwater Behaviour and Physiology, vol. 35, no. 3, pp. 139–148, 2002.
[110]  R. C. Guia?u and D. W. Dunham, “Initiation and outcome of agonistic contests in male form I Cambarus robustus girard, 1852 crayfish (Decapoda, Cambaridae),” Crustaceana, vol. 70, no. 4, pp. 480–496, 1997.
[111]  H. V. S. Peeke, M. H. Figler, and E. S. Chang, “Sex differences and prior residence effects in shelter competition in juvenile lobsters, Homarus americanus Milne-Edwards,” Journal of Experimental Marine Biology and Ecology, vol. 229, no. 1, pp. 149–156, 1998.
[112]  P. J. Dunham, “Some effects of group housing upon the aggressive behavior of the lobster Homarus americanus,” Journal of Fisheries Research Board Canada, vol. 29, pp. 598–601, 1972.
[113]  T. Burk, An analysis of the social behaviour of crickets [Ph.D. thesis], Oxford University, 1979.
[114]  S. Kellie, J. Greer, and R. L. Cooper, “Alterations in habituation of the tail flip response in epigean and troglobitic crayfish,” Journal of Experimental Zoology, vol. 290, no. 2, pp. 163–176, 2001.
[115]  Z. Shuranova, Y. Burmistrov, and C. I. Abramson, “Habituation to a novel environment in the crayfish Procambarus cubensis,” Journal of Crustacean Biology, vol. 25, no. 3, pp. 488–494, 2005.
[116]  R. F. Oliveira, P. K. McGregor, and C. Latruffe, “Know thine enemy: fighting fish gather information from observing conspecific interactions,” Proceedings of the Royal Society B, vol. 265, no. 1401, pp. 1045–1049, 1998.
[117]  L. A. Dugatkin, “Bystander effects and the structure of dominance hierarchies,” Behavior Ecology, vol. 12, pp. 348–352, 2001.
[118]  S. M. Bierbower, Z. P. Shuranova, K. Viele, and R. L. Cooper, “Comparative study of environmental factors influencing motor task learning and memory retention in sighted and blind crayfish,” Brain and Behavior, vol. 3, no. 1, pp. 4–13, 2013.
[119]  Y. Hsu, R. L. Earley, and L. L. Wolf, “Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes,” Biological Reviews of the Cambridge Philosophical Society, vol. 81, no. 1, pp. 33–74, 2006.
[120]  R. P. Hannes, D. Franck, and F. Liemann, “Effects of rank order fights on whole-body and blood concentrations of androgens and corticosteroids in the male swordtail (Xiphophorus helleri),” Zeitschrift fur Tierpsychologie, vol. 65, pp. 53–65, 1984.
[121]  K. L. Huhman, T. O. Moore, C. F. Ferris, E. H. Mougey, and J. L. Meyerhoff, “Acute and repeated exposure to social conflict in male golden hamsters: increases in plasma POMC-peptides and cortisol and decreases in plasma testosterone,” Hormones and Behavior, vol. 25, no. 2, pp. 206–216, 1991.
[122]  K. L. Huhman, T. O. Moore, E. H. Mougey, and J. L. Meyerhoff, “Hormonal responses to fighting in hamsters: separation of physical and psychological causes,” Physiology and Behavior, vol. 51, no. 5, pp. 1083–1086, 1992.
[123]  G. W. Schuett, H. J. Harlow, J. D. Rose, E. A. Van Kirk, and W. J. Murdoch, “Levels of plasma corticosterone and testosterone in male copperheads (Agkistrodon contortrix) following staged fights,” Hormones and Behavior, vol. 30, no. 1, pp. 60–68, 1996.
[124]  Y. Sakakura, M. Tagawa, and K. Tsukamoto, “Whole-body cortisol concentrations and ontogeny of aggressive behavior in yellowtail (Seriola quinqueradiata Temminck and Schlegel; Carangidae),” General and Comparative Endocrinology, vol. 109, no. 2, pp. 286–292, 1998.
[125]  G. W. Schuett and M. S. Grober, “Post-fight levels of plasma lactate and corticosterone in male copperheads, Agkistrodon contortrix (Serpentes, Viperidae): differences between winners and losers,” Physiology and Behavior, vol. 71, no. 3-4, pp. 335–341, 2000.
[126]  O. ?verli, W. J. Korzan, E. H?glund et al., “Stress coping style predicts aggression and social dominance in rainbow trout,” Hormones and Behavior, vol. 45, no. 4, pp. 235–241, 2004.
[127]  K. A. Sloman, K. M. Gilmour, A. C. Taylor, and N. B. Metcalfe, “Physiological effects of dominance hierarchies within groups of brown trout, Salmo trutta, held under simulated natural conditions,” Fish Physiology and Biochemistry, vol. 22, no. 1, pp. 11–20, 2000.
[128]  M. N. Muller and R. W. Wrangham, “Dominance, cortisol and stress in wild chimpanzees (Pan troglodytes schweinfurthii),” Behavioral Ecology and Sociobiology, vol. 55, no. 4, pp. 332–340, 2004.
[129]  J. Sands and S. Creel, “Social dominance, aggression and faecal glucocorticoid levels in a wild population of wolves, Canis lupus,” Animal Behaviour, vol. 67, no. 3, pp. 387–396, 2004.
[130]  F. Saudou, D. A. Amara, A. Dierich et al., “Enhanced aggressive behavior in mice lacking 5-HT(1B) receptor,” Science, vol. 265, no. 5180, pp. 1875–1878, 1994.
[131]  O. Cases, I. Self, J. Grimsby et al., “Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA,” Science, vol. 268, no. 5218, pp. 1763–1766, 1995.
[132]  D. H. Edwards and E. A. Kravitz, “Serotonin, social status and aggression,” Current Opinion in Neurobiology, vol. 7, no. 6, pp. 812–819, 1997.
[133]  W. A. Weiger, “Serotonergic modulation of behaviour: a phylogenetic review,” Biological Reviews, vol. 72, pp. 61–95, 1997.
[134]  R. Huber and A. Delago, “Serotonin alters decisions to withdraw in fighting crayfish, Astacus astacus: the motivational concept revisited,” Journal of Comparative Physiology A, vol. 182, no. 5, pp. 573–583, 1998.
[135]  W. H. Wu and R. L. Cooper, “The regulation and packaging of synaptic vesicles as related to recruitment within glutamatergic synapses,” Neuroscience, vol. 225, pp. 185–198, 2012.
[136]  W. H. Wu and R. L. Cooper, “Role of serotonin in the regulation of synaptic transmission in invertebrate NMJs,” Experimental Neurobiology, vol. 21, no. 3, pp. 101–112, 2012.
[137]  Y.-S. Chung, R. M. Cooper, J. Graff, and R. L. Cooper, “The acute and chronic effect of low temperature on survival, heart rate and neural function in crayfish (Procambarus clarkii) and prawn (Macrobrachium rosenbergii) species,” Open Journal of Molecular and Integrative Physiology, vol. 2, pp. 75–86, 2012.
[138]  R. M. Cooper, H. Schapker-Finucane, H. Adami, and R. L. Cooper, “Heart and ventilatory measures in crayfish during copulation,” Open Journal of Molecular and Integrative Physiology, vol. 1, no. 3, pp. 36–42, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413