全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influences of Movement Behavior on Animal Distributions at Edges of Homogeneous Patches

DOI: 10.1155/2013/602845

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose that changes in movement behavior may be a proximate mechanism that influences the accumulation of animals at habitat edges. We tested this idea with a combination of empirical and simulation experiments in a resource-free landscape. The movements of individual flour beetles, Tribolium confusum, were tracked across a paper arena edged with invisible tape until beetles crossed the edge. Movement behavior (step lengths and turn angles) and cumulative occupancy were analyzed according to distance from the edge. We found that beetles took smaller steps with larger turn angles near edges than in the center of the arena and that beetle distribution was highly biased towards the edge of the arena. We then tested two agent-based simulation models for each beetle: an edge-independent model and an edge-dependent model. Both models predicted less time spent at the edge than was observed. The proportion of time spent at edges depended on the propensity to cross the edge, which could not be explained by beetle body size or energetic condition. The distribution of animals with respect to habitat edges depends on many factors, but we suggest that proximate mechanisms such as movement behavior should be explicitly considered when interpreting animal distributions. 1. Introduction Movement of individuals is a critical factor for the population ecology of most organisms, affecting energy flow, distribution, and the genetic and demographic structure of populations [1–4]. Knowledge of the causes of movement behavior may be key in developing a full understanding of the spatial structure and dynamics of populations [1, 5–10]. For example, an increasingly large body of research finds that organisms generally move quickly and directly through low-quality habitats (e.g., [4, 11, 12]). This in turn predicts there will be fewer individuals in resource-poor than in resource-rich environments [5, 13], and many studies have found such a correspondence between movement behavior and population density (e.g., [14–18]). In addition to habitat quality, another key factor affecting the movement of organisms is the degree of permeability of the interface between habitats [16, 19–21]. Permeability is the tendency of the edge to inhibit or enhance organisms’ movement across it [19, 21–23] and it directly affects the degree to which organisms leave a particular habitat [12, 15, 19]. Borders that are readily crossed by dispersing individuals are considered to be soft or semipermeable edges, while those that are unlikely to be crossed are known as hard or impermeable. This

References

[1]  A. R. Johnson, J. A. Wiens, B. T. Milne, and T. O. Crist, “Animal movements and population dynamics in heterogeneous landscapes,” Landscape Ecology, vol. 7, no. 1, pp. 63–75, 1992.
[2]  N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, UK, 1997.
[3]  N. E. Mcintyre and J. A. Wiens, “How does habitat patch size affect animal movement? An experiment with darkling beetles,” Ecology, vol. 80, no. 7, pp. 2261–2270, 1999.
[4]  N. Schtickzelle, A. Joiris, H. van Dyck, and M. Baguette, “Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly,” BMC Evolutionary Biology, vol. 7, article 4, 2007.
[5]  P. Turchin, “Translating foraging movements in heterogeneous environments into the spatial distribution of foragers,” Ecology, vol. 72, no. 4, pp. 1253–1266, 1991.
[6]  J. A. Wiens, N. C. Stenseth, B. van Horne, and R. A. Ims, “Ecological mechanisms and landscape ecology,” Oikos, vol. 66, no. 3, pp. 369–380, 1993.
[7]  T. O. Crist and J. A. Wiens, “Individual movements and estimation of population size in darkling beetles (Coleoptera: Tenebrionidae),” Journal of Animal Ecology, vol. 64, no. 6, pp. 733–746, 1995.
[8]  P. Stapp and B. van Horne, “Response of deer mice (Peromyscus maniculatus) to shrubs in shortgrass prairie: linking small-scale movements and the spatial distribution of individuals,” Functional Ecology, vol. 11, no. 5, pp. 644–651, 1997.
[9]  D. E. Bowler and T. G. Benton, “Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics,” Biological Reviews of the Cambridge Philosophical Society, vol. 80, no. 2, pp. 205–225, 2005.
[10]  R. Nathan, W. M. Getz, E. Revilla et al., “A movement ecology paradigm for unifying organismal movement research,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19052–19059, 2008.
[11]  T. Crist, D. Guertin, J. Wiens, and B. Milne, “Animal movement in heterogeneous landscapes: an experiment with Eleodes beetles in shortgrass prairie,” Functional Ecology, vol. 6, no. 5, pp. 536–544, 1992.
[12]  A. Berggren, B. Birath, and O. Kindvall, “Effect of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel's bush-cricket (Metrioptera roeseli),” Conservation Biology, vol. 16, no. 6, pp. 1562–1569, 2002.
[13]  D. Kuefler, B. Hudgens, N. M. Haddad, W. F. Morris, and N. Thurgate, “The conflicting role of matrix habitats as conduits and barriers for dispersal,” Ecology, vol. 91, no. 4, pp. 944–950, 2010.
[14]  C. B. Schultz, “Dispersal behavior and its implications for reserve design in a rare Oregon butterfly,” Conservation Biology, vol. 12, no. 2, pp. 284–292, 1998.
[15]  N. M. Haddad, “Corridor use predicted from behaviors at habitat boundaries,” American Naturalist, vol. 153, no. 2, pp. 215–227, 1999.
[16]  C. B. Schultz and E. E. Crone, “Edge-mediated dispersal behavior in a prairie butterfly,” Ecology, vol. 82, no. 7, pp. 1879–1892, 2001.
[17]  B. G. Dickson, J. S. Jenness, and P. Beier, “Influence of vegetation, topography, and roads on cougar movement in Southern California,” Journal of Wildlife Management, vol. 69, no. 1, pp. 264–276, 2005.
[18]  D. Kuefler and N. M. Haddad, “Local versus landscape determinants of butterfly movement behaviors,” Ecography, vol. 29, no. 4, pp. 549–560, 2006.
[19]  J. A. Stamps, M. Buechner, and V. V. Krishnan, “The effects of edge permeability and habitat geometry on emigration from patches of habitat,” American Naturalist, vol. 129, no. 4, pp. 533–552, 1987.
[20]  W. F. Fagan, R. S. Cantrell, and C. Cosner, “How habitat edges change species interactions,” American Naturalist, vol. 153, no. 2, pp. 165–182, 1999.
[21]  W. Z. Lidicker, “Responses of mammals to habitat edges: an overview,” Landscape Ecology, vol. 14, no. 4, pp. 333–343, 1999.
[22]  M. Buechner, “Conservation in insular parks: simulation models of factors affecting the movement of animals across park boundaries,” Biological Conservation, vol. 41, no. 1, pp. 57–76, 1987.
[23]  P. Duelli, M. Studer, I. Marchand, and S. Jakob, “Population movements of arthropods between natural and cultivated areas,” Biological Conservation, vol. 54, no. 3, pp. 193–207, 1990.
[24]  O. Kindvall, “Dispersal in a metapopulation of the bush cricket, Metrioptera bicolor (Orthoptera: Tettigoniidae),” Journal of Animal Ecology, vol. 68, no. 1, pp. 172–185, 1999.
[25]  D. S. Wilson, A. B. Clark, K. Coleman, and T. Dearstyne, “Shyness and boldness in humans and other animals,” Trends in Ecology and Evolution, vol. 9, no. 11, pp. 442–446, 1994.
[26]  M. Wolf, G. S. van Doorn, O. Leimar, and F. J. Weissing, “Life-history trade-offs favour the evolution of animal personalities,” Nature, vol. 447, no. 7144, pp. 581–584, 2007.
[27]  D. Réale, S. M. Reader, D. Sol, P. T. McDougall, and N. J. Dingemanse, “Integrating animal temperament within ecology and evolution,” Biological Reviews, vol. 82, no. 2, pp. 291–318, 2007.
[28]  S. L. Lima and P. A. Zollner, “Towards a behavioral ecology of ecological landscapes,” Trends in Ecology and Evolution, vol. 11, no. 3, pp. 131–135, 1996.
[29]  P. M. Kareiva and N. Shigesada, “Analyzing insect movement as a correlated random walk,” Oecologia, vol. 56, no. 2-3, pp. 234–238, 1983.
[30]  L. Ries and T. D. Sisk, “A predictive model of edge effects,” Ecology, vol. 85, no. 11, pp. 2917–2926, 2004.
[31]  L. Ries and T. D. Sisk, “What is an edge species? The implications of sensitivity to habitat edges,” Oikos, vol. 119, no. 10, pp. 1636–1642, 2010.
[32]  S. P. Courtney and S. Courtney, “The “edge-effect” in butterfly oviposition: causality in Anthocharis cardamines and related species,” Ecological Entomology, vol. 7, no. 2, pp. 131–137, 1982.
[33]  L. C. Remer and S. B. Heard, “Local movement and edge effects on competition and coexistence in ephemeral-patch models,” American Naturalist, vol. 152, no. 6, pp. 896–904, 1998.
[34]  J. Olofsson, S. Stark, and L. Oksanen, “Reindeer influence on ecosystem processes in the tundra,” Oikos, vol. 105, no. 2, pp. 386–396, 2004.
[35]  J. M. Morales and S. P. Ellner, “Scaling up animal movements in heterogeneous landscapes: the importance of behavior,” Ecology, vol. 83, no. 8, pp. 2240–2247, 2002.
[36]  R. M. Ewers and R. K. Didham, “Pervasive impact of large-scale edge effects on a beetle community,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 14, pp. 5426–5429, 2008.
[37]  L. Ries and T. D. Sisk, “Butterfly edge effects are predicted by a simple model in a complex landscape,” Oecologia, vol. 156, no. 1, pp. 75–86, 2008.
[38]  M. Holyoak, R. Casagrandi, R. Nathan, E. Revilla, and O. Spiegel, “Trends and missing parts in the study of movement ecology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19060–19065, 2008.
[39]  A. M. Reynolds, “Animals that randomly reorient at cues left by correlated random walkers do the lévy walk,” American Naturalist, vol. 175, no. 5, pp. 607–613, 2010.
[40]  P. M. Kareiva, “Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments,” Oecologia, vol. 57, no. 3, pp. 322–327, 1983.
[41]  R. Southwood and P. A. Henderson, Ecological Methods, Blackwell Science, Oxford, UK, 2000.
[42]  E. M. Jakob, S. D. Marshall, and G. W. Uetz, “Estimating fitness: a comparison of body condition indices,” Oikos, vol. 77, no. 1, pp. 61–67, 1996.
[43]  P. Turchin, Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants, Sinauer Associates, Sunderland, Mass, USA, 1998.
[44]  J. F. Campbell and D. W. Hagstrum, “Patch exploitation by Tribolium castaneum: movement patterns, distribution, and oviposition,” Journal of Stored Products Research, vol. 38, no. 1, pp. 55–68, 2002.
[45]  C. Nansen, D. K. Weaver, S. E. Sing et al., “Within-field spatial distribution of Cephus cinctus (Hymenoptera: Cephidae) larvae in Montana wheat fields,” Canadian Entomologist, vol. 137, no. 2, pp. 202–214, 2005.
[46]  M. A. Villard, M. K. Trzcinski, and G. Merriam, “Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy,” Conservation Biology, vol. 13, no. 4, pp. 774–783, 1999.
[47]  L. Imbeau, P. Drapeau, and M. M?nkk?nen, “Are forest birds categorised as “edge species” strictly associated with edges?” Ecography, vol. 26, no. 4, pp. 514–520, 2003.
[48]  L. Ries and D. M. Debinski, “Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa,” Journal of Animal Ecology, vol. 70, no. 5, pp. 840–852, 2001.
[49]  N. Schtickzelle and M. Baguette, “Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration—patch area relationships in fragmented landscapes,” Journal of Animal Ecology, vol. 72, no. 4, pp. 533–545, 2003.
[50]  H. van Dyck and M. Baguette, “Dispersal behaviour in fragmented landscapes: routine or special movements?” Basic and Applied Ecology, vol. 6, no. 6, pp. 535–545, 2005.
[51]  K. Dmowski and M. Kozakiewicz, “Influence of a shrub corridor on movements of passerine birds to a lake littoral zone,” Landscape Ecology, vol. 4, no. 2-3, pp. 99–108, 1990.
[52]  A. Desrochers and M. J. Fortin, “Understanding avian responses to forest boundaries: a case study with chickadee winter flocks,” Oikos, vol. 91, no. 2, pp. 376–384, 2000.
[53]  E. E. Barding and T. A. Nelson, “Raccoons use habitat edges in Northern Illinois,” American Midland Naturalist, vol. 159, no. 2, pp. 394–402, 2008.
[54]  E. E. Crone and C. B. Schultz, “Old models explain new observations of butterfly movement at patch edges,” Ecology, vol. 89, no. 7, pp. 2061–2067, 2008.
[55]  J. Clobert, J. F. Le Galliard, J. C?té, S. Meylan, and M. Massot, “Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations,” Ecology Letters, vol. 12, no. 3, pp. 197–209, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133