Force measurement is one of the key issues for design of high speed vehicle configurations. They are routinely tested in impulse facilities where the test duration is in the order of few milliseconds. Since, the experiments are performed in short test times, it is expected that the model never achieves the steady state. So, the measurement diagnostics must account this fact while inferring the forces from the measured parameters. One of the methods is the determination of characteristics system response function by including the dynamics of the system. The aim of this work is to develop a calibration experimental setup and measure axial force on generic aerodynamic body configurations during a short time (~0.6?ms). A generic aerodynamic model attached to a “stress bar” is suspended freely and an impulse load is applied at the tip of the model. An accelerometer fitted with the model records the signal corresponding to the motion of the model. Then, the system characteristics function (impulse response function) is obtained from input force history and output accelerometer signal and further used to predict any unknown forces of similar nature. The recovered forces are compared well with the applied ones with a reasonable accuracy of %. 1. Introduction There has been an increase in the demand for dynamic calibration of force measuring devices in many industrial applications, automobiles, and aircrafts [1–3]. With respect to high speed and hypersonic flow environment, the force measurement on aerodynamic models is challenging due to the need for fast response devices and dynamics involved in the integrated model-balance system [4]. Most of these measurements are performed in short duration impulse facilities where the typical time scale of measurement is in the order of few milliseconds or less. The traditional technique is to obtain velocity data from laser-Doppler interferometry from which acceleration data can be derived [5]. The other method is to obtain the acceleration history from the model directly and to subsequently determine the forces with the knowledge of mass. In this way, the cause of the motion can be predicted from model accelerations by determining the forces during steady-state measurements [6–8]. Each of these techniques has relative merits/demerits and is best suited when the size of model is small. But, when the size and weight of the model increase, it is almost impossible to obtain steady-state signal during short time-scale measurement. So, the system dynamics must be included in the measured signals for predicting the unknown
References
[1]
R. Kumme and M. J. Dixon, “The results of comparisons between two different dynamic force measurement systems,” Measurement, vol. 10, no. 3, pp. 140–144, 1992.
[2]
Y. Fujii, “Toward dynamic force calibration,” Measurement, vol. 42, no. 7, pp. 1039–1044, 2009.
[3]
R. Kumme, “Investigation of the comparison method for the dynamic calibration of force transducers,” Measurement, vol. 23, no. 4, pp. 239–245, 1998.
[4]
L. Bernstein, “Force measurement in short-duration hypersonic facilities,” AGARDograph 214, 1975.
[5]
T. Bruns, R. Kumme, M. Kobusch, and M. Peters, “From oscillation to impact: the design of a new force calibration device at PTB,” Measurement, vol. 32, no. 1, pp. 85–92, 2002.
[6]
N. Sahoo, D. R. Mahapatra, G. Jagadeesh, S. Gopalakrishnan, and K. P. J. Reddy, “An accelerometer balance system for measurement of aerodynamic force coefficients over blunt bodies in a hypersonic shock tunnel,” Measurement Science and Technology, vol. 14, no. 3, pp. 260–272, 2003.
[7]
N. Sahoo, K. Suryavamshi, K. P. J. Reddy, and D. J. Mee, “Dynamic force balances for short-duration hypersonic testing facilities,” Experiments in Fluids, vol. 38, no. 5, pp. 606–614, 2005.
[8]
N. Sahoo, D. R. Mahapatra, G. Jagadeesh, S. Gopalakrishnan, and K. P. J. Reddy, “Design and analysis of a flat accelerometer-based force balance system for shock tunnel testing,” Measurement, vol. 40, no. 1, pp. 93–106, 2007.
[9]
D. J. Mee, “Dynamic calibration of force balances for impulse hypersonic facilities,” Shock Waves, vol. 12, no. 6, pp. 443–455, 2003.
[10]
A. L. Smith and D. J. Mee, “Dynamic strain measurement using piezoelectric polymer film,” Journal of Strain Analysis for Engineering Design, vol. 31, no. 6, pp. 463–465, 1996.
[11]
R. P. Reed, “Convolution and deconvolution in measurement and control: part 7—system transient response characterization for convolution and deconvolution,” Measurements and Control, vol. 189, pp. 69–83, 1998.
[12]
Y. Fujii and H. Fujimoto, “Proposal for an impulse response evaluation method for force transducers,” Measurement Science and Technology, vol. 10, no. 4, pp. N31–N33, 1999.
[13]
S. R. Sanderson and J. M. Simmons, “Drag balance for hypervelocity impulse facilities,” AIAA journal, vol. 29, no. 12, pp. 2185–2191, 1991.
[14]
S. L. Tuttle, D. J. Mee, and J. M. Simmons, “Drag measurements at Mach 5 using a stress wave force balance,” Experiments in Fluids, vol. 19, no. 5, pp. 336–341, 1995.
[15]
C. Jessen and H. Gr?nig, “A new principle for a short-duration six component balance,” Experiments in Fluids, vol. 8, no. 3-4, pp. 231–233, 1989.