全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Insulin and the Lung: Connecting Asthma and Metabolic Syndrome

DOI: 10.1155/2013/627384

Full-Text   Cite this paper   Add to My Lib

Abstract:

Obesity, metabolic syndrome, and asthma are all rapidly increasing globally. Substantial emerging evidence suggests that these three conditions are epidemiologically and mechanistically linked. Since the link between obesity and asthma appears to extend beyond mechanical pulmonary disadvantage, molecular understanding is necessary. Insulin resistance is a strong, independent risk factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved. This review summarizes current knowledge regarding the effect of insulin on cellular components of the lung and highlights the molecular consequences of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects of insulin signaling provide mechanistic insight into the clinical evidence for the links between obesity, metabolic syndrome, and airway diseases, setting the stage for novel therapeutic avenues targeting these conditions. 1. Introduction It is now well recognized that obesity and asthma are epidemiologically linked [1–4]. Such a relationship is also seen between asthma and other markers of the metabolic syndrome such as insulin resistance and hypertension that cannot be accounted for by increased body mass alone [4–7]. While both obesity and asthma are individually associated with an increased state of inflammation [8], interestingly, in obese asthmatics, there is a dissociation between cellular inflammation and severity of symptoms, especially in women [9, 10]. This discordance would suggest that while obesity-related systemic inflammation can certainly be one mechanism for increased asthma risk, there is a need to examine mechanisms independent of cellular inflammation that may play a role in asthma in the context of conditions such as obesity and metabolic syndrome. A number of cellular signaling and metabolism mechanisms could contribute to increased asthma risk in patients with obesity and/or metabolic syndrome. Considering the fact that altered glucose metabolism occurs in both cases, and hyperinsulinemia with reduced insulin sensitivity is involved, an obvious potential factor affecting the lung is insulin itself, particularly a direct effect on structural cells as well as immune cells in the airway. In a large Danish cohort, it was observed that insulin resistance (IR) was more strongly related to asthma risk than any of the anthropometric parameters [11]. While

References

[1]  P. Demoly, B. Gueron, K. Annunziata, L. Adamek, and R. D. Walters, “Update on asthma control in five European countries: results of a 2008 survey,” European Respiratory Review, vol. 19, no. 116, pp. 150–157, 2010.
[2]  A. S. Gershon, C. Wang, J. Guan, and T. To, “Burden of comorbidity in individuals with asthma,” Thorax, vol. 65, no. 7, pp. 612–618, 2010.
[3]  D. A. Beuther and E. R. Sutherland, “Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 7, pp. 661–666, 2007.
[4]  B. H. Thuesen, L. L. N. Husemoen, L.-G. Hersoug, C. Pisinger, and A. Linneberg, “Insulin resistance as a predictor of incident asthma-like symptoms in adults,” Clinical and Experimental Allergy, vol. 39, no. 5, pp. 700–707, 2009.
[5]  O. O. Adeyeye, A. O. Ogbera, O. O. Ogunleye et al., “Understanding asthma and the metabolic syndrome—a Nigerian report,” International Archives of Medicine, vol. 5, no. 1, article 20, 2012.
[6]  B. M. Brumpton, C. A. Camargo Jr, P. R. Romundstad, A. Langhammer, Y. Chen, and X. M. Mai, “Metabolic syndrome and incidence of asthma in adults: the HUNT study,” European Respiratory Journal, 2013.
[7]  J. Park, T. B. Kim, H. Joo, J. S. Lee, S. D. Lee, and Y. M. Oh, “Diseases concomitant with asthma in middle-aged and elderly subjects in Korea: a population-based study,” Allergy, Asthma & Immunology Research, vol. 5, no. 1, pp. 16–25, 2013.
[8]  M. Can?z, F. Erdenen, H. Uzun, C. Müderriso?lu, and S. Aydin, “The relationship of inflammatory cytokines with asthma and obesity,” Clinical and Investigative Medicine, vol. 31, no. 6, pp. E373–E379, 2008.
[9]  D. A. Beuther, S. T. Weiss, and E. R. Sutherland, “Obesity and asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 2, pp. 112–119, 2006.
[10]  P. Haldar, I. D. Pavord, D. E. Shaw et al., “Cluster analysis and clinical asthma phenotypes,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 3, pp. 218–224, 2008.
[11]  L. L. N. Husemoen, C. Glümer, C. Lau, C. Pisinger, L. S. M?rch, and A. Linneberg, “Association of obesity and insulin resistance with asthma and aeroallergen sensitization,” Allergy, vol. 63, no. 5, pp. 575–582, 2008.
[12]  R. A. DeFronzo and E. Ferrannini, “Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease,” Diabetes Care, vol. 14, no. 3, pp. 173–194, 1991.
[13]  R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005.
[14]  M. Uzunlulu, A. Oguz, C. Gedik, G. Aslan, and S. Arik, “Is prevalence of metabolic syndrome high in patients with asthma?” Acta Clinica Belgica, vol. 66, no. 1, pp. 49–52, 2011.
[15]  E. E. Akpinar, S. Akpinar, S. Ertek, E. Sayin, and M. Gulhan, “Systemic inflammation and metabolic syndrome in stable COPD patients,” Tüberküloz ve Toraks, vol. 60, no. 3, pp. 230–237, 2012.
[16]  J.-P. Després, I. Lemieux, J. Bergeron et al., “Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 6, pp. 1039–1049, 2008.
[17]  A. Agrawal, U. Mabalirajan, T. Ahmad, and B. Ghosh, “Emerging interface between metabolic syndrome and asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 3, pp. 270–275, 2011.
[18]  P. Sonksen and J. Sonksen, “Insulin: understanding its action in health and disease,” British Journal of Anaesthesia, vol. 85, no. 1, pp. 69–79, 2000.
[19]  E. J. Gallagher and D. LeRoith, “Minireview: IGF, insulin, and cancer,” Endocrinology, vol. 152, no. 7, pp. 2546–2551, 2011.
[20]  L. Rosenfeld, “Insulin: discovery and controversy,” Clinical Chemistry, vol. 48, no. 12, pp. 2270–2288, 2002.
[21]  R. Aikawa, M. Nawano, Y. Gu et al., “Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 Kinase/Akt,” Circulation, vol. 102, no. 23, pp. 2873–2879, 2000.
[22]  R. J. Barth, “Insulin resistance, obesity and the metabolic syndrome,” South Dakota Medicine, no. 22–27, 2011.
[23]  M. Wozniak, B. Rydzewski, S. P. Baker, and M. K. Raizada, “The cellular and physiological actions of insulin in the central nervous system,” Neurochemistry International, vol. 22, no. 1, pp. 1–10, 1993.
[24]  E. Bugianesi, S. Moscatiello, M. F. Ciaravella, and G. Marchesini, “Insulin resistance in nonalcoholic fatty liver disease,” Current Pharmaceutical Design, vol. 16, no. 17, pp. 1941–1951, 2010.
[25]  S. M. Grundy, “Obesity, metabolic syndrome, and cardiovascular disease,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2595–2600, 2004.
[26]  E. Ferrannini, A. Natali, B. Capaldo, M. Lehtovirta, S. Jacob, and H. Yki-J?rvinen, “Insulin resistance, hyperinsulinemia, and blood pressure: role of age and obesity. European Group for the Study of Insulin Resistance (EGIR),” Hypertension, vol. 30, no. 5, pp. 1144–1149, 1997.
[27]  M. Hamed, P. Metcalf, and J. Kolbe, “Fixed airflow obstruction among nonsmokers with asthma: a case-comparison study,” Journal of Asthma, vol. 50, no. 6, pp. 606–612, 2013.
[28]  R. Kaaks, “Nutrition, hormones, and breast cancer: is insulin the missing link?” Cancer Causes and Control, vol. 7, no. 6, pp. 605–625, 1996.
[29]  R. Kaaks, A. Lukanova, and M. S. Kurzer, “Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 12, pp. 1531–1543, 2002.
[30]  E. T. Petridou, T. N. Sergentanis, C. N. Antonopoulos et al., “Insulin resistance: an independent risk factor for lung cancer?” Metabolism: Clinical and Experimental, vol. 60, no. 8, pp. 1100–1106, 2011.
[31]  V. T. Samuel, K. F. Petersen, and G. I. Shulman, “Lipid-induced insulin resistance: unravelling the mechanism,” The Lancet, vol. 375, no. 9733, pp. 2267–2277, 2010.
[32]  N. A. Tritos and C. S. Mantzoros, “Clinical review 97: syndromes of severe insulin resistance,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 9, pp. 3025–3030, 1998.
[33]  R. E. Ulane, J. E. Graeber, and R. Steinherz, “A comparison of insulin receptors in the developing fetal lung in normal and in streptozotocin-induced diabetic pregnancies,” Pediatric Pulmonology, vol. 1, no. 3, supplement, pp. S86–S90, 1985.
[34]  W. K. Morishige, C. A. Uetake, F. C. Greenwood, and J. Akaka, “Pulmonary insulin responsivity: in vivo effects of insulin on the diabetic rat lung and specific insulin binding to lung receptors in normal rats,” Endocrinology, vol. 100, no. 6, pp. 1710–1722, 1977.
[35]  N. D. Neufeld, L. M. Corbo, and S. A. Kaplan, “Plasma membrane insulin receptors in fetal rabbit lung,” Pediatric Research, vol. 15, no. 7, pp. 1058–1062, 1981.
[36]  F. R. Sodoyez-Goffaux, J. C. Sodoyez, and C. J. de Vos, “Insulin receptors in the fetal rat lung. A transient characteristic of fetal cells?” Pediatric Research, vol. 15, no. 9, pp. 1303–1307, 1981.
[37]  O. L. Miakotina, K. L. Goss, and J. M. Snyder, “Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells,” Respiratory Research, vol. 3, article 27, 2002.
[38]  S. A. Dekowski and J. M. Snyder, “Insulin regulation of messenger ribonucleic acid for the surfactant-associated proteins in human fetal lung in vitro,” Endocrinology, vol. 131, no. 2, pp. 669–676, 1992.
[39]  M. B. Azad, A. B. Becker, and A. L. Kozyrskyj, “Association of maternal diabetes and child asthma,” Pediatric Pulmonology, vol. 48, no. 6, pp. 545–552, 2013.
[40]  N. Vrachnis, N. Antonakopoulos, Z. Iliodromiti et al., “Impact of maternal diabetes on epigenetic modifications leading to diseases in the offspring,” Journal of Diabetes Research, vol. 2012, Article ID 538474, 6 pages, 2012.
[41]  H. Ikeda, I. Shiojima, T. Oka et al., “Increased Akt-mTOR signaling in lung epithelium is associated with respiratory distress syndrome in mice,” Molecular and Cellular Biology, vol. 31, no. 5, pp. 1054–1065, 2011.
[42]  M. Hallman, D. Wermer, B. L. Epstein, and L. Gluck, “Effects of maternal insulin or glucose infusion on the fetus: Study on lung surfactant phospholipids, plasma myoinositol, and fetal growth in the rabbit,” American Journal of Obstetrics and Gynecology, vol. 142, no. 7, pp. 877–882, 1982.
[43]  R. U. Agu, M. I. Ugwoke, M. Armand, R. Kinget, and N. Verbeke, “The lung as a route for systemic delivery of therapeutic proteins and peptides,” Respiratory Research, vol. 2, no. 4, pp. 198–209, 2001.
[44]  F.-Y. Liu, D. O. Kildsig, and A. K. Mitra, “Pulmonary biotransformation of insulin in rat and rabbit,” Life Sciences, vol. 51, no. 21, pp. 1683–1689, 1992.
[45]  Z. Shen, Q. Zhang, S. Wei, and T. Nagai, “Proteolytic enzymes as a limitation for pulmonary absorption of insulin: in vitro and in vivo investigations,” International Journal of Pharmaceutics, vol. 192, no. 2, pp. 115–121, 1999.
[46]  L. Ceglia, J. Lau, and A. G. Pittas, “Meta-analysis: efficacy and safety of inhaled insulin therapy in adults with diabetes mellitus,” Annals of Internal Medicine, vol. 145, no. 9, pp. 665–675, 2006.
[47]  G. T. McMahon and R. A. Arky, “Inhaled insulin for diabetes mellitus,” The New England Journal of Medicine, vol. 356, no. 5, pp. 497–502, 2007.
[48]  A. Viardot, S. T. Grey, F. Mackay, and D. Chisholm, “Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype,” Endocrinology, vol. 148, no. 1, pp. 346–353, 2007.
[49]  E. Lessmann, G. Grochowy, L. Weingarten et al., “Insulin and insulin-like growth factor-1 promote mast cell survival via activation of the phosphatidylinositol-3-kinase pathway,” Experimental Hematology, vol. 34, no. 11, pp. 1532–1541, 2006.
[50]  C. A. Lasagna-Reeves, A. L. Clos, T. Midoro-Hiriuti, R. M. Goldblum, G. R. Jackson, and R. Kayed, “Inhaled insulin forms toxic pulmonary amyloid aggregates,” Endocrinology, vol. 151, no. 10, pp. 4717–4724, 2010.
[51]  L. M. Hunt, M. A. Valenzuela, and J. A. Pugh, “NIDDM patients' fears and hopes about insulin therapy: the basis of patient reluctance,” Diabetes Care, vol. 20, no. 3, pp. 292–298, 1997.
[52]  J. Lenzer, “Inhaled insulin is approved in Europe and United States,” British Medical Journal, vol. 332, no. 7537, article 321, 2006.
[53]  H. Shapiro, I. Kagan, M. Shalita-Chesner, J. Singer, and P. Singer, “Inhaled aerosolized insulin: a “topical” anti-inflammatory treatment for acute lung injury and respiratory distress syndrome?” Inflammation, vol. 33, no. 5, pp. 315–319, 2010.
[54]  H. K. Kim, C. H. Lee, J. M. Kim, O. Ayush, S. Y. Im, and H. K. Lee, “Biphasic late airway hyperresponsiveness in a murine model of asthma,” International Archives of Allergy and Immunology, vol. 160, no. 2, pp. 173–183, 2013.
[55]  S. Zuyderduyn, M. B. Sukkar, A. Fust, S. Dhaliwal, and J. K. Burgess, “Treating asthma means treating airway smooth muscle cells,” European Respiratory Journal, vol. 32, no. 2, pp. 265–274, 2008.
[56]  P. Cohen, J. P. Noveral, A. Bhala, S. E. Nunn, D. J. Herrick, and M. M. Grunstein, “Leukotriene D4 facilitates airway smooth muscle cell proliferation via modulation of the IGF axis,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 269, no. 2, part 1, pp. L151–L157, 1995.
[57]  J. P. Noveral, A. Bhala, R. L. Hintz, M. M. Grunstein, and P. Cohen, “Insulin-like growth factor axis in airway smooth muscle cells,” American Journal of Physiology, vol. 267, no. 6, part 1, pp. L761–L765, 1994.
[58]  M. D. Kelleher, M. K. Abe, T.-S. O. Chao et al., “Role of MAP kinase activation in bovine tracheal smooth muscle mitogenesis,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 268, no. 6, part 1, pp. L894–L901, 1995.
[59]  T. L. Ediger and M. L. Toews, “Synergistic stimulation of airway smooth muscle cell mitogenesis,” Journal of Pharmacology and Experimental Therapeutics, vol. 294, no. 3, pp. 1076–1082, 2000.
[60]  R. Gosens, S. A. Nelemans, M. Hiemstra, M. M. Grootte Bromhaar, H. Meurs, and J. Zaagsma, “Insulin induces a hypercontractile airway smooth muscle phenotype,” European Journal of Pharmacology, vol. 481, no. 1, pp. 125–131, 2003.
[61]  J. A. Hirota, T. T. B. Nguyen, D. Schaafsma, P. Sharma, and T. Tran, “Airway smooth muscle in asthma: phenotype plasticity and function,” Pulmonary Pharmacology and Therapeutics, vol. 22, no. 5, pp. 370–378, 2009.
[62]  R. Gosens, D. Schaafsma, H. Meurs, J. Zaagsma, and S. A. Nelemans, “Role of Rho-kinase in maintaining airway smooth muscle contractile phenotype,” European Journal of Pharmacology, vol. 483, no. 1, pp. 71–78, 2004.
[63]  M. Papagianni, A. Hatziefthimiou, G. Chachami, K. Gourgoulianis, P.-A. Molyvdas, and E. Paraskeva, “Insulin causes a transient induction of proliferation via activation of the PI3-kinase pathway in airway smooth muscle cells,” Experimental and Clinical Endocrinology and Diabetes, vol. 115, no. 2, pp. 118–123, 2007.
[64]  D. Schaafsma, K. D. McNeill, G. L. Stelmack et al., “Insulin increases the expression of contractile phenotypic markers in airway smooth muscle,” American Journal of Physiology: Cell Physiology, vol. 293, no. 1, pp. C429–C439, 2007.
[65]  B. G. J. Dekkers, D. Schaafsma, T. Tran, J. Zaagsma, and H. Meurs, “Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype,” American Journal of Respiratory Cell and Molecular Biology, vol. 41, no. 4, pp. 494–504, 2009.
[66]  M. Patarroyo, K. Tryggvason, and I. Virtanen, “Laminin isoforms in tumor invasion, angiogenesis and metastasis,” Seminars in Cancer Biology, vol. 12, no. 3, pp. 197–207, 2002.
[67]  D. Schaafsma, R. Gosens, J. M. Ris, J. Zaagsma, H. Meurs, and S. A. Nelemans, “Insulin induces airway smooth muscle contraction,” British Journal of Pharmacology, vol. 150, no. 2, pp. 136–142, 2007.
[68]  K. D. Courtney, R. B. Corcoran, and J. A. Engelman, “The PI3K pathway as drug target in human cancer,” Journal of Clinical Oncology, vol. 28, no. 6, pp. 1075–1083, 2010.
[69]  J. A. Engelman, J. Luo, and L. C. Cantley, “The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism,” Nature Reviews Genetics, vol. 7, no. 8, pp. 606–619, 2006.
[70]  S. Uddin, A. R. Hussain, A. K. Siraj et al., “Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival,” Blood, vol. 108, no. 13, pp. 4178–4186, 2006.
[71]  S. Jia, Z. Liu, S. Zhang et al., “Essential roles of PI(3)K-p110β in cell growth, metabolism and tumorigenesis,” Nature, vol. 454, no. 7205, pp. 776–779, 2008.
[72]  Z. A. Knight, B. Gonzalez, M. E. Feldman et al., “A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling,” Cell, vol. 125, no. 4, pp. 733–747, 2006.
[73]  T. Numata, J. Araya, S. Fujii et al., “Insulin-dependent phosphatidylinositol 3-kinase/Akt and ERK signaling pathways inhibit TLR3-mediated human bronchial epithelial cell apoptosis,” Journal of Immunology, vol. 187, no. 1, pp. 510–519, 2011.
[74]  T. D. Clausen, E. Mathiesen, P. Ekbom, E. Hellmuth, T. Mandrup-Poulsen, and P. Damm, “Poor pregnancy outcome in women with type 2 diabetes,” Diabetes Care, vol. 28, no. 2, pp. 323–328, 2005.
[75]  C. A. Crowther, J. E. Hiller, J. R. Moss, A. J. McPhee, W. S. Jeffries, and J. S. Robinson, “Effect of treatment of gestational diabetes mellitus on pregnancy outcomes,” The New England Journal of Medicine, vol. 352, no. 24, pp. 2477–2486, 2005.
[76]  D. M. Jensen, P. Damm, L. Moelsted-Pedersen et al., “Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study,” Diabetes Care, vol. 27, no. 12, pp. 2819–2823, 2004.
[77]  J. L. Nold and M. K. Georgieff, “Infants of diabetic mothers,” Pediatric Clinics of North America, vol. 51, no. 3, pp. 619–637, 2004.
[78]  V. Compernolle, K. Brusselmans, T. Acker et al., “Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice,” Nature Medicine, vol. 8, no. 7, pp. 702–710, 2002.
[79]  M. F. Robert, R. K. Neff, and J. P. Hubbell, “Association between maternal diabetes and the respiratory distress syndrome in the newborn,” The New England Journal of Medicine, vol. 294, no. 7, pp. 357–360, 1976.
[80]  E. Zmora, I. H. Gewolb, and D. L. Shapiro, “Effects of insulin and glucose on pulmonary insulin receptors in late gestation fetal rats,” Experimental Lung Research, vol. 18, no. 2, pp. 247–258, 1992.
[81]  J. Aich, U. Mabalirajan, T. Ahmad, A. Agrawal, and B. Ghosh, “Loss-of-function of inositol polyphosphate-4-phosphatase reversibly increases the severity of allergic airway inflammation,” Nature Communications, vol. 3, article 877, 2012.
[82]  S. J. Hirst, J. G. Martin, J. V. Bonacci et al., “Proliferative aspects of airway smooth muscle,” Journal of Allergy and Clinical Immunology, vol. 114, no. 2, supplement, pp. S2–S17, 2004.
[83]  C. Desbois-Mouthon, A. Cadoret, M.-J. Blivet-Van Eggelpo?l et al., “Insulin and IGF-1 stimulate the β-catenin pathway through two signalling cascades involving GSK-3β inhibition and Ras activation,” Oncogene, vol. 20, no. 2, pp. 252–259, 2001.
[84]  Y. Teng, X. Wang, Y. Wang, and D. Ma, “Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells,” Biochemical and Biophysical Research Communications, vol. 392, no. 3, pp. 373–379, 2010.
[85]  S. R. Jansen, A. M. Van Ziel, H. A. Baarsma, and R. Gosens, “β-catenin regulates airway smooth muscle contraction,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 299, no. 2, pp. L204–L214, 2010.
[86]  J. R. Miller and R. T. Moon, “Analysis of the signaling activities of localization mutants of β- catenin during axis specification in Xenopus,” Journal of Cell Biology, vol. 139, no. 1, pp. 229–243, 1997.
[87]  M. L. Mucenski, S. E. Wert, J. M. Nation et al., “β-catenin is required for specification of proximal/distal cell fate during lung morphogenesis,” Journal of Biological Chemistry, vol. 278, no. 41, pp. 40231–40238, 2003.
[88]  A. Wodarz and R. Nusse, “Mechanisms of Wnt signaling in development,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 59–88, 1998.
[89]  W. J. Nelson and R. Nusse, “Convergence of Wnt, β-catenin, and cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004.
[90]  M. L. Mucenski, J. M. Nation, A. R. Thitoff et al., “β-catenin regulates differentiation of respiratory epithelial cells in vivo,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 289, no. 6, pp. L971–L979, 2005.
[91]  X. Zhang, J. P. Gaspard, and D. C. Chung, “Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia,” Cancer Research, vol. 61, no. 16, pp. 6050–6054, 2001.
[92]  S. S. Barbieri and B. B. Weksler, “Tobacco smoke cooperates with interleukin-1β to alter β-catenin trafficking in vascular endothelium resulting in increased permeability and induction of cyclooxygenase-2 expression in vitro and in vivo,” FASEB Journal, vol. 21, no. 8, pp. 1831–1843, 2007.
[93]  E. Bowley, D. B. O'Gorman, and B. S. Gan, “β-catenin signaling in fibroproliferative disease,” Journal of Surgical Research, vol. 138, no. 1, pp. 141–150, 2007.
[94]  R. Gosens, H. Meurs, and M. Schmidt, “The GSK-3/β-catenin-signalling axis in smooth muscle and its relationship with remodelling,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 378, no. 2, pp. 185–191, 2008.
[95]  T. Enomoto, J. Usuki, A. Azuma, T. Nakagawa, and S. Kudoh, “Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis,” Chest, vol. 123, no. 6, pp. 2007–2011, 2003.
[96]  N. Leone, D. Courbon, F. Thomas et al., “Lung function impairment and metabolic syndrome the critical role of abdominal obesity,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 6, pp. 509–516, 2009.
[97]  S. Haq, A. Michael, M. Andreucci et al., “Stabilization of β-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4610–4615, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133