全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Long-Lasting Effects of Oxy- and Sulfoanalogues of L-Arginine on Enzyme Actions

DOI: 10.1155/2013/407616

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arginine residues are very important for the structure of proteins and their action. Arginine is essential for many natural processes because it has unique ionizable group under physiological conditions. Numerous mimetics of arginine were synthesized and their biological effects were evaluated, but the mechanisms of actions are still unknown. The aim of this study is to see if oxy- and sulfoanalogues of arginine can be recognized by human arginyl-tRNA synthetase (HArgS)—an enzyme responsible for coupling of L-arginine with its cognate tRNA in a two-step catalytic reaction. We make use of modeling and docking studies of adenylate kinase (ADK) to reveal the effects produced by the incorporation of the arginine mimetics on the structure of ADK and its action. Three analogues of arginine, L-canavanine (Cav), L-norcanavanine (NCav), and L-sulfoarginine (sArg), can be recognized as substrates of HArgS when incorporated in different peptide and protein sequences instead of L-arginine. Mutation in the enzyme active center by arginine mimetics leads to conformational changes, which produce a decrease the rate of the enzyme catalyzed reaction and even a loss of enzymatic action. All these observations could explain the long-lasting nature of the effects of the arginine analogues. 1. Introduction Peptidomimetics have found wide application as bioavailable, biostable, and potent mimetics of naturally occurring biologically active peptides. L-Arginine has guanidinium group, which is positively charged at neutral pH and is involved in many important physiological and pathophysiological processes [1]. It has a very ionizable amino acid, and it is found most frequently buried in the protein interior [2–5]. Arginine residues are essential in a variety of biological processes, such as the regulation of conformation or redox potentials [6, 7]; viral capsid assembly [8]; electrostatic steering [9]; voltage sensing across lipid bilayers [10–12]; H+ transport [6, 13–15] and peptide translocation across bilayers [16, 17]. They also play a critical role at protein-protein interfaces [5, 16], in enzymatic active sites [3, 5, 18], and in variety of transport channels [19, 20]. More recent findings show that arginine-specific methylation of histones may cooperate with other types of posttransitional histone modification to regulate chromatin structure and gene transcription [21]. Proteins that methylate histones on arginine residues can collaborate with other coactivators such as nuclear receptors. Enzymes are probably the most studied biological molecules. They constitute

References

[1]  L. P. Ma?i?, “Arginine mimetic structures in biologically active antagonists and inhibitors,” Current Medicinal Chemistry, vol. 13, no. 30, pp. 3627–3648, 2006.
[2]  M. J. Harms, J. L. Schlessman, G. R. Sue, and E. Bertrand García-Moreno, “Arginine residues at internal positions in a protein are always charged,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 47, pp. 18954–18959, 2011.
[3]  G. J. Bartlett, C. T. Porter, N. Borkakoti, and J. M. Thornton, “Analysis of catalytic residues in enzyme active sites,” Journal of Molecular Biology, vol. 324, no. 1, pp. 105–121, 2002.
[4]  J. Kim, J. Mao, and M. R. Gunner, “Are acidic and basic groups in buried proteins predicted to be ionized?” Journal of Molecular Biology, vol. 348, no. 5, pp. 1283–1298, 2005.
[5]  A. A. Bogan and K. S. Thorn, “Anatomy of hot spots in protein interfaces,” Journal of Molecular Biology, vol. 280, no. 1, pp. 1–9, 1998.
[6]  R. L. Cutler, A. M. Davies, S. Creighton et al., “Role of Arginine-38 in regulation of the cytochrome c oxidation-reduction equilibrium,” Biochemistry, vol. 28, no. 8, pp. 3188–3197, 1989.
[7]  P. J. Winn, S. K. Lüdemann, R. Gauges, V. Lounnas, and R. C. Wade, “Comparison of the dynamics of substrate access channels in three cytochrome p450s reveals different opening mechanisms and a novel functional role for a buried arginine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5361–5366, 2002.
[8]  J. L. Hansen, A. M. Long, and S. C. Schultz, “Structure of the RNA-dependent RNA polymerase of poliovirus,” Structure, vol. 5, no. 8, pp. 1109–1122, 1997.
[9]  R. C. Wade, R. R. Gabdoulline, S. K. Lüdemann, and V. Lounnas, “Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 5942–5949, 1998.
[10]  Y. Jiang, V. Ruta, J. Chen, A. Lee, and R. MacKinnon, “The principle of gating charge movement in a voltage-dependent K+ channel,” Nature, vol. 423, no. 6935, pp. 42–48, 2003.
[11]  S. B. Long, E. B. Campbell, and R. MacKinnon, “Voltage sensor of Kv1.2: structural basis of electromechanical coupling,” Science, vol. 309, no. 5736, pp. 903–908, 2005.
[12]  X. Tao, A. Lee, W. Limapichat, D. A. Dougherty, and R. MacKinnon, “A gating charge transfer center in voltage sensors,” Science, vol. 328, no. 5974, pp. 67–73, 2010.
[13]  N. P. Le, H. Omote, Y. Wada, M. K. Al-Shawi, R. K. Nakamoto, and M. Futai, “Escherichia coli ATP synthase α subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state,” Biochemistry, vol. 39, no. 10, pp. 2778–2783, 2000.
[14]  R. Rammelsberg, G. Huhn, M. Lübben, and K. Gerwert, “Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network,” Biochemistry, vol. 37, no. 14, pp. 5001–5009, 1998.
[15]  H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science, vol. 280, no. 5371, pp. 1934–1937, 1998.
[16]  S. Futaki, T. Suzuki, W. Ohashi et al., “Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery,” Journal of Biological Chemistry, vol. 276, no. 8, pp. 5836–5840, 2001.
[17]  H. D. Herce and A. E. Garcia, “Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20805–20810, 2007.
[18]  P. B. Crowley and A. Golovin, “Cation-π interactions in protein-protein interfaces,” Proteins, vol. 59, no. 2, pp. 231–239, 2005.
[19]  D. F. Savage, J. D. O'Connell III, L. J. W. Miercke, J. Finer-Moore, and R. M. Stroud, “Structural context shapes the aquaporin selectivity filter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 40, pp. 17164–17169, 2010.
[20]  O. Boudker, R. M. Ryan, D. Yernool, K. Shimamoto, and E. Gouaux, “Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter,” Nature, vol. 445, no. 7126, pp. 387–393, 2007.
[21]  M. R. Stallcup, “Role of protein methylation in chromatin remodeling and transcriptional regulation,” Oncogene, vol. 20, no. 24, pp. 3014–3020, 2001.
[22]  C. Walsh, “Enabling the chemistry of life,” Nature, vol. 409, no. 6817, pp. 226–231, 2001.
[23]  P. P. Dzeja, K. T. Vitkevicius, M. M. Redfield, J. C. Burnett, and A. Terzic, “Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure,” Circulation Research, vol. 84, no. 10, pp. 1137–1143, 1999.
[24]  S. P. Bessman and C. L. Carpenter, “The creatine-creatine phosphate energy shuttle,” Annual Review of Biochemistry, vol. 54, pp. 831–862, 1985.
[25]  P. P. Dzeja, R. J. Zeleznikar, and N. D. Goldberg, “Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes,” Molecular and Cellular Biochemistry, vol. 184, no. 1-2, pp. 169–182, 1998.
[26]  P. Dzeja, A. Kalvenas, A. Toleikis, and A. Praskevicius, “The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase,” Biochemistry International, vol. 10, no. 2, pp. 259–265, 1985.
[27]  S. Kubo and L. H. Noda, “Adenylate kinase of porcine heart,” European Journal of Biochemistry, vol. 48, no. 2, pp. 325–331, 1974.
[28]  F. D. Laterveer, K. Nicolay, and F. N. Gellerich, “Experimental evidence for dynamic compartmentation of ADP at the mitochondrial periphery: coupling of mitochondrial adenylate kinase and mitochondrial hexokinase with oxidative phosphorylation under conditions mimicking the intracellular colloid osmotic pressure,” Molecular and Cellular Biochemistry, vol. 174, no. 1-2, pp. 43–51, 1997.
[29]  P. P. Dzeja and A. Terzic, “Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels,” FASEB Journal, vol. 12, no. 7, pp. 523–529, 1998.
[30]  J. R. Elvir-Mairena, A. Jovanovic, L. A. Gomez, A. E. Alekseev, and A. Terzic, “Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity,” Journal of Biological Chemistry, vol. 271, no. 50, pp. 31903–31908, 1996.
[31]  J. A. Gutierrez and L. N. Csonka, “Isolation and characterization of adenylate kinase (adk) mutations in Salmonella typhimurium which block the ability of glycine betaine to function as an osmoprotectant,” Journal of Bacteriology, vol. 177, no. 2, pp. 390–400, 1995.
[32]  L. Karl Olson, W. Schroeder, R. Paul Robertson, N. D. Goldberg, and T. F. Walseth, “Suppression of adenylate kinase catalyzed phosphotransfer precedes and is associated with glucose-induced insulin secretion in intact HIT-T15 cells,” Journal of Biological Chemistry, vol. 271, no. 28, pp. 16544–16552, 1996.
[33]  W. Bandlow, G. Strobel, C. Zoglowek, U. Oechsner, and V. Magdolen, “Yeast adenylate kinase is active simultaneously in mitochondria and cytoplasm and is required for non-fermentative growth,” European Journal of Biochemistry, vol. 178, no. 2, pp. 451–457, 1988.
[34]  http://www.uniprot.org.
[35]  B. Delagoutte, D. Moras, and J. Cavarelli, “tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding,” EMBO Journal, vol. 19, no. 21, pp. 5599–5610, 2000.
[36]  T. Dzimbova, I. Iliev, K. Georgiev, R. Detcheva, A. Balacheva, and T. Pajpanova, “In vitro assessment of the cytotoxic effects of hydrazide derivatives of unnatural amino acids,” in Peptides: Building Bridges Proceedings of the 22nd American Peptide Symposium, M. Lebl, Ed., pp. 392–393, 2011.
[37]  T. Dzimbova, I. Iliev, R. Detcheva, A. Balacheva, and T. Pajpanova, “In vitro assessment of the cytotoxic effects of hydrazide derivatives of sulfoarginines in 3T3 and HepG2 cells,” in Proceedings of the Collection Symposium Series, vol. 13, pp. 34–36, 2011.
[38]  T. Dzimbova, E. Miladinova, S. Mohr et al., “Sulfo- and oxy-analogues of arginine: synthesis, analysis and preliminary biological screening,” Croatica Chemica Acta, vol. 84, no. 3, pp. 447–453, 2011.
[39]  T. Dzimbova, I. Iliev, K. Georgiev, R. Detcheva, A. Balacheva, and T. Pajpanova, “In vitro assessment of the cytotoxic effects of sulfo-arginine analogues and their hydrazide derivatives in 3T3 and HepG2 cells,” Biotechnology & Biotechnological Equipment, vol. 26, pp. 180–184, 2012.
[40]  Molecular Operating Environment (MOE), 2012, 10, Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2012.
[41]  G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, vol. 267, no. 3, pp. 727–748, 1997.
[42]  http://www.scientificlinux.org.
[43]  http://molegro.com/index.php.
[44]  R. Thomsen and M. H. Christensen, “MolDock: a new technique for high-accuracy molecular docking,” Journal of Medicinal Chemistry, vol. 49, no. 11, pp. 3315–3321, 2006.
[45]  http://www.rcsb.org.
[46]  W. D. Cornell, P. Cieplak, C. I. Bayly et al., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” Journal of the American Chemical Society, vol. 117, no. 19, pp. 5179–5197, 1995.
[47]  J. Cavarelli, B. Delagoutte, G. Eriani, J. Gangloff, and D. Moras, “L-arginine recognition by yeast arginyl-tRNA synthetase,” EMBO Journal, vol. 17, no. 18, pp. 5438–5448, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413