全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cdc48: A Swiss Army Knife of Cell Biology

DOI: 10.1155/2013/183421

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cdc48 (also called VCP and p97) is an abundant protein that plays essential regulatory functions in a broad array of cellular processes. Working with various cofactors, Cdc48 utilizes its ATPase activity to promote the assembly and disassembly of protein complexes. Here, we review key biological functions and regulation of Cdc48 in ubiquitin-related events. Given the broad employment of Cdc48 in cell biology and its intimate ties to human diseases (e.g., amyotrophic lateral sclerosis), studies of Cdc48 will bring significant insights into the mechanism and function of ubiquitin in health and diseases. 1. Introduction Thirty years ago when David Botstein’s laboratory first isolated cdc48-1 allele among 18 cold-sensitive yeast mutants defective in cell cycle progression [1], little did they know how much power is embedded in CDC48. Although Cdc48 was initially suspected to play a pivotal role in some nuclear event(s) essential for cell cycle progression, it is now known to be a key regulator for a myriad of cellular processes in nucleus, cytosol, mitochondria, peroxisome, endoplasmic reticulum (ER), Golgi, lysosome, and plasma membrane [2–6]. Befittingly, Cdc48 is one of the most abundant proteins in eukaryotic cells, accounting for 1% of cytosolic proteins [5, 7]. The mammalian homologue of Cdc48 is also called p97 for molecular weight or VCP (valosin-containing protein) by the groups that identified it with different approaches in various systems [1, 8, 9]. Although little attention was paid to Cdc48 early on, its stock has risen dramatically in recent years (Figure 1). Figure 1: Number of papers on Cdc48 published since 1982. Key words “Cdc48, VCP, and p97” were used to search PUBMED for papers on Cdc48 from 1982 to 2012. Evolutionally conserved Cdc48 is an ATPase essential for cell growth and survival. It is a central component in many ubiquitin-mediated pathways and participates in a wide range of biological events, including cell cycle regulation, protein degradation, membrane fusion, DNA replication, gene expression, DNA damage response, apoptosis, and autophagy [2–5, 7, 10, 11]. A book would be needed to comprehensively cover the various functions of Cdc48. Here, we specifically highlight a few key aspects of Cdc48: the biochemical properties, physiological regulation, and crucial biological functions. 2. Biochemical Properties 2.1. ATPase Activity The biochemical basis for broad utility of Cdc48 in cell biology lies in its ATPase activity. ATPase function was first demonstrated with p97, Xenopus homologue of Cdc48 [9], and subsequently shown to

References

[1]  D. Moir, S. E. Stewart, B. C. Osmond, and D. Botstein, “Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies,” Genetics, vol. 100, no. 4, pp. 547–563, 1982.
[2]  S. Jentsch and S. Rumpf, “Cdc48 (p97): a “molecular gearbox” in the ubiquitin pathway?” Trends in Biochemical Sciences, vol. 32, no. 1, pp. 6–11, 2007.
[3]  N. P. Dantuma and T. Hoppe, “Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin,” Trends in Cell Biology, vol. 22, no. 9, pp. 483–491, 2012.
[4]  C. Dargemont and B. Ossareh-Nazari, “Cdc48/p97, a key actor in the interplay between autophagy and ubiquitin/proteasome catabolic pathways,” Biochimica et Biophysica Acta, vol. 1823, no. 1, pp. 138–144, 2012.
[5]  D. H. Wolf and A. Stolz, “The Cdc48 machine in endoplasmic reticulum associated protein degradation,” Biochimica et Biophysica Acta, vol. 1823, no. 1, pp. 117–124, 2012.
[6]  H. Meyer, M. Bug, and S. Bremer, “Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system,” Nature Cell Biology, vol. 14, no. 2, pp. 117–123, 2012.
[7]  Y. Ye, “Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase,” Journal of Structural Biology, vol. 156, no. 1, pp. 29–40, 2006.
[8]  K. J. Koller and M. J. Brownstein, “Use of a cDNA clone to identify a supposed precursor protein containing valosin,” Nature, vol. 325, no. 6104, pp. 542–545, 1987.
[9]  J.-M. Peters, M. J. Walsh, and W. W. Franke, “An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF,” EMBO Journal, vol. 9, no. 6, pp. 1757–1767, 1990.
[10]  H. N. Ramanathan and Y. Ye, “Revoking the cellular license to replicate: yet another AAA assignment,” Molecular Cell, vol. 44, no. 1, pp. 3–4, 2011.
[11]  A. Buchberger, “Roles of cdc48 in regulated protein degradation in yeast,” Subcellular Biochemistry, vol. 66, pp. 195–222, 2013.
[12]  T. Rowe and W. E. Balch, “Membrane fusion: bridging the gap by AAA ATPases,” Nature, vol. 388, no. 6637, pp. 20–21, 1997.
[13]  S. Dalal and P. I. Hanson, “Membrane traffic: what drives the AAA motor?” Cell, vol. 104, no. 1, pp. 5–8, 2001.
[14]  T. Ogura and A. J. Wilkinson, “AAA+ superfamily ATPases: common structure-diverse function,” Genes to Cells, vol. 6, no. 7, pp. 575–597, 2001.
[15]  Q. Wang, C. Song, and C.-C. H. Li, “Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions,” Journal of Structural Biology, vol. 146, no. 1-2, pp. 44–57, 2004.
[16]  D. Finley, H. D. Ulrich, T. Sommer, and P. Kaiser, “The ubiquitin-proteasome system of Saccharomyces cerevisiae,” Genetics, vol. 192, no. 2, pp. 319–360, 2012.
[17]  D. Komander and M. Rape, “The ubiquitin code,” Annual Review of Biochemistry, vol. 81, pp. 203–229, 2012.
[18]  R. M. Dai and C.-C. H. Li, “Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation,” Nature Cell Biology, vol. 3, no. 8, pp. 740–744, 2001.
[19]  H. H. Meyer, Y. Wang, and G. Warren, “Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4,” EMBO Journal, vol. 21, no. 21, pp. 5645–5652, 2002.
[20]  Y. Ye, H. H. Meyer, and T. A. Rapoport, “Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains,” Journal of Cell Biology, vol. 162, no. 1, pp. 71–84, 2003.
[21]  J. T. Hannich, A. Lewis, M. B. Kroetz et al., “Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 280, no. 6, pp. 4102–4110, 2005.
[22]  M. Nie, A. Aslanian, J. Prudden et al., “Dual recruitment of Cdc48 (p97)-Ufd1-Npl4 ubiquitin-selective segregase by small ubiquitin-like modifier protein (SUMO) and ubiquitin in SUMO-targeted ubiquitin ligase-mediated genome stability functions,” Journal of Biological Chemistry, vol. 287, no. 35, pp. 29610–29619, 2012.
[23]  S. Bergink, T. Ammon, M. Kern, L. Schermelleh, H. Leonhardt, and S. Jentsch, “Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction,” Nature Cell Biology, vol. 15, no. 5, pp. 526–532, 2013.
[24]  A. Decottignies, A. Evain, and M. Ghislain, “Binding of Cdc48p to a ubiquitin-related UBX domain from novel yeast proteins involved in intracellular proteolysis and sporulation,” Yeast, vol. 21, no. 2, pp. 127–139, 2004.
[25]  C. Schuberth, H. Richly, S. Rumpf, and A. Buchberger, “Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation,” EMBO Reports, vol. 5, no. 8, pp. 818–824, 2004.
[26]  L. Madsen, M. Seeger, C. A. Semple, and R. Hartmann-Petersen, “New ATPase regulators-p97 goes to the PUB,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 12, pp. 2380–2388, 2009.
[27]  S. Rumpf and S. Jentsch, “Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone,” Molecular Cell, vol. 21, no. 2, pp. 261–269, 2006.
[28]  C. Schuberth and A. Buchberger, “UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97,” Cellular and Molecular Life Sciences, vol. 65, no. 15, pp. 2360–2371, 2008.
[29]  G. Zhao, X. Zhou, L. Wang, G. Li, H. Schindelin, and W. J. Lennarz, “Studies on peptide: N-glycanase-p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulum-associated degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8785–8790, 2007.
[30]  G. Zhao, G. Li, H. Schindelin, and W. J. Lennarz, “An Armadillo motif in Ufd3 interacts with Cdc48 and is involved in ubiquitin homeostasis and protein degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16197–16202, 2009.
[31]  K. Uchiyama, E. Jokitalo, F. Kano et al., “VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for golgi and ER assembly in vivo,” Journal of Cell Biology, vol. 159, no. 5, pp. 855–866, 2002.
[32]  Y. Wang, A. Satoh, G. Warren, and H. H. Meyer, “VCIP135 acts as a deubiquitinating enzyme during p97-p47-mediated reassembly of mitotic Golgi fragments,” Journal of Cell Biology, vol. 164, no. 7, pp. 973–978, 2004.
[33]  S. B?hm, G. Lamberti, V. Fernández-Sáiz, C. Stapf, and A. Buchberger, “Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding,” Molecular and Cellular Biology, vol. 31, no. 7, pp. 1528–1539, 2011.
[34]  G. H. Baek, I. Kim, and H. Rao, “The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 33, pp. 13558–13563, 2011.
[35]  Y. Liu and Y. Ye, “Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum,” Current Protein & Peptide Science, vol. 13, no. 5, pp. 436–446, 2012.
[36]  M. Egerton, O. R. Ashe, D. Chen, B. J. Druker, W. H. Burgess, and L. E. Samelson, “VCP, the mammalian homolog of cdc48, is tyrosine phosphorylated in response to T cell antigen receptor activation,” EMBO Journal, vol. 11, no. 10, pp. 3533–3540, 1992.
[37]  M. Egerton and L. E. Samelson, “Biochemical characterization of valosin-containing protein, a protein tyrosine kinase substrate in hematopoietic cells,” Journal of Biological Chemistry, vol. 269, no. 15, pp. 11435–11441, 1994.
[38]  F. Madeo, J. Schlauer, H. Zischka, D. Mecke, and K.-U. Fr?hlich, “Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p,” Molecular Biology of the Cell, vol. 9, no. 1, pp. 131–141, 1998.
[39]  G. Li, G. Zhao, H. Schindelin, and W. J. Lennarz, “Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD,” Biochemical and Biophysical Research Communications, vol. 375, no. 2, pp. 247–251, 2008.
[40]  I. Kim, J. Ahn, C. Liu et al., “The Png1-Rad23 complex regulates glycoprotein turnover,” Journal of Cell Biology, vol. 172, no. 2, pp. 211–219, 2006.
[41]  C. Lavoie, E. Chevet, L. Roy et al., “Tyrosine phosphorylation of p97 regulates transitional endoplasmic reticulum assembly in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13637–13642, 2000.
[42]  C. Bertram, N. Von Neuhoff, B. Skawran, D. Steinemann, B. Schlegelberger, and R. Hass, “The differentiation/retrodifferentiation program of human U937 leukemia cells is accompanied by changes of VCP/p97,” BMC Cell Biology, vol. 9, article 12, 2008.
[43]  C. A. Ewens, P. Kloppsteck, A. F?rster, X. Zhang, and P. S. Freemont, “Structural and functional implications of phosphorylation and acetylation in the regulation of the AAA+ protein p97,” Biochemistry and Cell Biology, vol. 88, no. 1, pp. 41–48, 2010.
[44]  M. Livingstone, H. Ruan, J. Weiner et al., “Valosin-containing protein phosphorylation at Ser784 in response to DNA damage,” Cancer Research, vol. 65, no. 17, pp. 7533–7540, 2005.
[45]  J. B. Klein, M. T. Barati, R. Wu et al., “Akt-mediated valosin-containing protein 97 phosphorylation regulates its association with ubiquitinated proteins,” Journal of Biological Chemistry, vol. 280, no. 36, pp. 31870–31881, 2005.
[46]  C. Mori-Konya, N. Kato, R. Maeda et al., “p97/valosin-containing protein (VCP) is highly modulated by phosphorylation and acetylation,” Genes to Cells, vol. 14, no. 4, pp. 483–497, 2009.
[47]  P. Cloutier, M. Lavallee-Adam, D. Faubert, M. Blanchette, and B. Coulombe, “A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity,” PLOS Genetics, vol. 9, no. 1, Article ID e1003210, 2013.
[48]  S. Kernstock, E. Davydova, M. Jakobsson et al., “Lysine methylation of VCP by a member of a novel human protein methyltransferase family,” Nature Communications, vol. 3, article 1038, 2012.
[49]  J. A. Wohlschlegel, E. S. Johnson, S. I. Reed, and J. R. Yates III, “Global analysis of protein sumoylation in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 279, no. 44, pp. 45662–45668, 2004.
[50]  J. Peng, D. Schwartz, J. E. Elias et al., “A proteomics approach to understanding protein ubiquitination,” Nature Biotechnology, vol. 21, no. 8, pp. 921–926, 2003.
[51]  J. M. M. Müller, K. Deinhardt, I. Rosewell, G. Warren, and D. T. Shima, “Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality,” Biochemical and Biophysical Research Communications, vol. 354, no. 2, pp. 459–465, 2007.
[52]  M. Rape, T. Hoppe, I. Gorr, M. Kalocay, H. Richly, and S. Jentsch, “Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48UFD1/NPL4, a ubiquitin-selective chaperone,” Cell, vol. 107, no. 5, pp. 667–677, 2001.
[53]  A. J. Wilcox and J. D. Laney, “A ubiquitin-selective AAA-ATPase mediates transcriptional switching by remodelling a repressor-promoter DNA complex,” Nature Cell Biology, vol. 11, no. 12, pp. 1481–1486, 2009.
[54]  R. Verma, R. Oania, R. Fang, G. T. Smith, and R. J. Deshaies, “Cdc48/p97 mediates UV-dependent turnover of RNA Pol II,” Molecular Cell, vol. 41, no. 1, pp. 82–92, 2011.
[55]  V. E. Kimonis, E. Fulchiero, J. Vesa, and G. Watts, “VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder,” Biochimica et Biophysica Acta, vol. 1782, no. 12, pp. 744–748, 2008.
[56]  C. C. Weihl, S. Dalal, A. Pestronk, and P. I. Hanson, “Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation,” Human Molecular Genetics, vol. 15, no. 2, pp. 189–199, 2006.
[57]  T. Takata, Y. Kimura, Y. Ohnuma et al., “Rescue of growth defects of yeast cdc48 mutants by pathogenic IBMPFD-VCPs,” Journal of Structural Biology, vol. 179, pp. 93–103, 2012.
[58]  V. Fernández-Sáiz and A. Buchberger, “Imbalances in p97 co-factor interactions in human proteinopathy,” EMBO Reports, vol. 11, no. 6, pp. 479–485, 2010.
[59]  D. Ritz, M. Vuk, P. Kirchner et al., “Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations,” Nature Cell Biology, vol. 13, no. 9, pp. 1116–1124, 2011.
[60]  Y. Erzurumlu, F. A. Kose, O. Gozen, D. Gozuacik, E. A. Toth, and P. Ballar, “A unique IBMPFD-related P97/VCP mutation with differential binding pattern and subcellular localization,” The International Journal of Biochemistry & Cell Biology, vol. 45, no. 4, pp. 773–782, 2013.
[61]  A. Nalbandian, S. Donkervoort, E. Dec et al., “The multiple faces of valosin-containing protein-associated diseases: inclusion body myopathy with Paget's disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis,” Journal of Molecular Neuroscience, vol. 45, no. 3, pp. 522–531, 2011.
[62]  H. Niwa, C. A. Ewens, C. Tsang, H. O. Yeung, X. Zhang, and P. S. Freemont, “The role of the N-domain in the atpase activity of the mammalian AAA ATPase p97/VCP,” Journal of Biological Chemistry, vol. 287, no. 11, pp. 8561–8570, 2012.
[63]  S. G. Mehta, M. Khare, R. Ramani et al., “Genotype-phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia,” Clinical Genetics, vol. 83, no. 5, pp. 422–431, 2013.
[64]  A. Franz, L. Ackermann, and T. Hoppe, “Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP,” Biochimica et Biophysica Acta, 2013.
[65]  K. Malpass, “Neurodegenerative disease: VCP mutations lead to defects in mitochondrial dynamics,” Nature Reviews Neurology, vol. 9, no. 5, article 239, 2013.
[66]  M. Ghislain, R. J. Dohmen, F. Levy, and A. Varshavsky, “Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae,” EMBO Journal, vol. 15, no. 18, pp. 4884–4899, 1996.
[67]  E. S. Johnson, P. C. M. Ma, I. M. Ota, and A. Varshavsky, “A proteolytic pathway that recognizes ubiquitin as a degradation signal,” Journal of Biological Chemistry, vol. 270, no. 29, pp. 17442–17456, 1995.
[68]  A. Hershko, A. Ciechanover, and A. Varshavsky, “The ubiquitin system,” Nature Medicine, vol. 6, no. 10, pp. 1073–1081, 2000.
[69]  A. Varshavsky, “Discovery of cellular regulation by protein degradation,” The Journal of Biological Chemistry, vol. 283, no. 50, pp. 34469–34489, 2008.
[70]  M. Koegl, T. Hoppe, S. Schlenker, H. D. Ulrich, T. U. Mayer, and S. Jentsch, “A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly,” Cell, vol. 96, no. 5, pp. 635–644, 1999.
[71]  D. Lambertson, L. Chen, and K. Madura, “Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae,” Genetics, vol. 153, no. 1, pp. 69–79, 1999.
[72]  K. Lindsten, F. M. S. De Vrij, L. G. G. C. Verhoef et al., “Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation,” Journal of Cell Biology, vol. 157, no. 3, pp. 417–427, 2002.
[73]  C. Liu, D. Van Dyk, P. Xu et al., “Ubiquitin chain elongation enzyme Ufd2 regulates a subset of Doa10 substrates,” Journal of Biological Chemistry, vol. 285, no. 14, pp. 10265–10272, 2010.
[74]  H. Richly, M. Rape, S. Braun, S. Rumpf, C. Hoege, and S. Jentsch, “A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting,” Cell, vol. 120, no. 1, pp. 73–84, 2005.
[75]  L. G. G. C. Verhoef, C. Heinen, A. Selivanova, E. F. Halff, F. A. Salomons, and N. P. Dantuma, “Minimal length requirement for proteasomal degradation of ubiquitin-dependent substrates,” FASEB Journal, vol. 23, no. 1, pp. 123–133, 2009.
[76]  Y. Ye, H. H. Meyer, and T. A. Rapoport, “The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol,” Nature, vol. 414, no. 6864, pp. 652–656, 2001.
[77]  S. S. Vembar and J. L. Brodsky, “One step at a time: endoplasmic reticulum-associated degradation,” Nature Reviews Molecular Cell Biology, vol. 9, no. 12, pp. 944–957, 2008.
[78]  S. Vashist and D. T. W. Ng, “Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control,” Journal of Cell Biology, vol. 165, no. 1, pp. 41–52, 2004.
[79]  P. Carvalho, V. Goder, and T. A. Rapoport, “Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins,” Cell, vol. 126, no. 2, pp. 361–373, 2006.
[80]  Y. Ye, Y. Shibata, C. Yun, D. Ron, and T. A. Rapoport, “A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol,” Nature, vol. 429, no. 6994, pp. 841–847, 2004.
[81]  Y. Elkabetz, I. Shapira, E. Rabinovich, and S. Bar-Nun, “Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates. Roles of endoplasmic reticulum-bound p97/Cdc48p and proteasome,” Journal of Biological Chemistry, vol. 279, no. 6, pp. 3980–3989, 2004.
[82]  D. Flierman, Y. Ye, M. Dai, V. Chau, and T. A. Rapoport, “Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane,” Journal of Biological Chemistry, vol. 278, no. 37, pp. 34774–34782, 2003.
[83]  S. Thoms, “Cdc48 can distinguish between native and non-native proteins in the absence of cofactors,” FEBS Letters, vol. 520, no. 1–3, pp. 107–110, 2002.
[84]  I. Kim, K. Mi, and H. Rao, “Multiple interactions of Rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis,” Molecular Biology of the Cell, vol. 15, no. 7, pp. 3357–3365, 2004.
[85]  V. E. Kimonis, M. J. Kovach, B. Waggoner et al., “Clinical and molecular studies in a unique family with autosomal dominant limb-girdle muscular dystrophy and Paget disease of bone,” Genetics in Medicine, vol. 2, no. 4, pp. 232–241, 2000.
[86]  G. D. J. Watts, J. Wymer, M. J. Kovach et al., “Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein,” Nature Genetics, vol. 36, no. 4, pp. 377–381, 2004.
[87]  H. Nakatogawa, K. Suzuki, Y. Kamada, and Y. Ohsumi, “Dynamics and diversity in autophagy mechanisms: lessons from yeast,” Nature Reviews Molecular Cell Biology, vol. 10, no. 7, pp. 458–467, 2009.
[88]  Z. Yang and D. J. Klionsky, “Eaten alive: a history of macroautophagy,” Nature Cell Biology, vol. 12, no. 9, pp. 814–822, 2010.
[89]  M. Komatsu and Y. Ichimura, “Selective autophagy regulates various cellular functions,” Genes to Cells, vol. 15, no. 9, pp. 923–933, 2010.
[90]  J.-S. Ju and C. C. Weihl, “Inclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy,” Human Molecular Genetics, vol. 19, no. 1, pp. R38–R45, 2010.
[91]  E. Tresse, F. A. Salomons, J. Vesa et al., “VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD,” Autophagy, vol. 6, no. 2, pp. 217–227, 2010.
[92]  S. Ishigaki, N. Hishikawa, J.-I. Niwa et al., “Physical and functional interaction between dorfin and valosin-containing protein that are colocalized in ubiquitylated inclusions in neurodegenerative disorders,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 51376–51385, 2004.
[93]  R. Krick, S. Bremer, E. Welter et al., “Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8,” Journal of Cell Biology, vol. 190, no. 6, pp. 965–973, 2010.
[94]  B. Ossareh-Nazari, M. Bonizec, M. Cohen et al., “Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy,” EMBO Reports, vol. 11, no. 7, pp. 548–554, 2010.
[95]  D. Seigneurin-Berny, A. Verdel, S. Curtet et al., “Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways,” Molecular and Cellular Biology, vol. 21, no. 23, pp. 8035–8044, 2001.
[96]  C. Boyault, B. Gilquin, Y. Zhang et al., “HDAC6-p97/VCP controlled polyubiquitin chain turnover,” EMBO Journal, vol. 25, no. 14, pp. 3357–3366, 2006.
[97]  J.-Y. Lee and T.-P. Yao, “Quality control autophagy: a joint effort of ubiquitin, protein deacetylase and actin cytoskeleton,” Autophagy, vol. 6, no. 4, pp. 555–557, 2010.
[98]  Y. Kawaguchi, J. J. Kovacs, A. McLaurin, J. M. Vance, A. Ito, and T.-P. Yao, “The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress,” Cell, vol. 115, no. 6, pp. 727–738, 2003.
[99]  J. A. Olzmann, A. Li, M. V. Chudaev et al., “Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6,” Journal of Cell Biology, vol. 178, no. 6, pp. 1025–1038, 2007.
[100]  H. Ouyang, Y. O. Ali, M. Ravichandran et al., “Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini,” Journal of Biological Chemistry, vol. 287, no. 4, pp. 2317–2327, 2012.
[101]  A. Tanaka, M. M. Cleland, S. Xu et al., “Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin,” Journal of Cell Biology, vol. 191, no. 7, pp. 1367–1380, 2010.
[102]  S. Xu, G. Peng, Y. Wang, S. Fang, and M. Karbowsk, “The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover,” Molecular Biology of the Cell, vol. 22, no. 3, pp. 291–300, 2011.
[103]  D. S. Haines, “p97-containing complexes in proliferation control and cancer: emerging culprits or Guilt by association?” Genes and Cancer, vol. 1, no. 7, pp. 753–763, 2010.
[104]  J. O. Johnson, J. Mandrioli, M. Benatar et al., “Exome sequencing reveals VCP mutations as a cause of familial ALS,” Neuron, vol. 68, no. 5, pp. 857–864, 2010.
[105]  D. Haubenberger, R. E. Bittner, S. Rauch-Shorny et al., “Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene,” Neurology, vol. 65, no. 8, pp. 1304–1305, 2005.
[106]  L. Guyant-Maréchal, A. Laquerrière, C. Duyckaerts et al., “Valosin-containing protein gene mutations: clinical and neuropathologic features,” Neurology, vol. 67, no. 4, pp. 644–651, 2006.
[107]  G. D. G. Watts, D. Thomasova, S. K. Ramdeen et al., “Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia,” Clinical Genetics, vol. 72, no. 5, pp. 420–426, 2007.
[108]  P. González-Pérez, E. T. Cirulli, V. E. Drory et al., “Novel mutation in VCP gene causes atypical amyotrophic lateral sclerosis,” Neurology, vol. 79, no. 22, pp. 2201–2208, 2012.
[109]  O. Brandman, J. Stewart-Ornstein, D. Wong et al., “A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress,” Cell, vol. 151, no. 5, pp. 1042–1054, 2012.
[110]  R. Verma, R. S. Oania, N. J. Kolawa, and R. J. Deshaies, “Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome,” eLife, vol. 2, Article ID e00308, 2013.
[111]  K. Shiozawa, N. Goda, T. Shimizu et al., “The common phospholipid-binding activity of the N-terminal domains of PEX1 and VCP/p97,” FEBS Journal, vol. 273, no. 21, pp. 4959–4971, 2006.
[112]  D. Barthelme and R. T. Sauer, “Identification of the Cdc48*20S proteasome as an ancient AAA+ proteolytic machine.,” Science, vol. 337, no. 6096, pp. 843–846, 2012.
[113]  D. Barthelme and R. T. Barthelme DSauer, “Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 9, pp. 3327–3332, 2013.
[114]  Q. Wang, B. A. Shinkre, J.-G. Lee et al., “The ERAD inhibitor eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group,” PLoS ONE, vol. 5, no. 11, Article ID e15479, 2010.
[115]  T.-F. Chou and R. J. Deshaies, “Development of p97 AAA ATPase inhibitors,” Autophagy, vol. 7, no. 9, pp. 1091–1092, 2011.
[116]  T.-F. Chou, S. J. Brown, D. Minond et al., “Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 4834–4839, 2011.
[117]  P. Yi, A. Higa, S. Taouji et al., “Sorafenib-mediated targeting of the AAA(+) ATPase p97/VCP leads to disruption of the secretory pathway, endoplasmic reticulum stress, and hepatocellular cancer cell death,” Molecular Cancer Therapeutics, vol. 11, no. 12, pp. 2610–2620, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413