全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ethanol- and/or Taurine-Induced Oxidative Stress in Chick Embryos

DOI: 10.1155/2013/240537

Full-Text   Cite this paper   Add to My Lib

Abstract:

Because taurine alleviates ethanol- (EtOH-) induced lipid peroxidation and liver damage in rats, we asked whether exogenous taurine could alleviate EtOH-induced oxidative stress in chick embryos. Exogenous EtOH (1.5?mmol/Kg egg or 3?mmol/Kg egg), taurine (4? mol/Kg egg), or EtOH and taurine (1.5?mmol EtOH and 4? mol taurine/Kg egg or 3?mmol EtOH and 4? mol taurine/Kg egg) were injected into fertile chicken eggs during the first three days of embryonic development (E0–2). At 11 days of development (midembryogenesis), serum taurine levels and brain caspase-3 activities, homocysteine (HoCys) levels, reduced glutathione (GSH) levels, membrane fatty acid composition, and lipid hydroperoxide (LPO) levels were measured. Early embryonic EtOH exposure caused increased brain apoptosis rates (caspase-3 activities); increased brain HoCys levels; increased oxidative-stress, as measured by decreased brain GSH levels; decreased brain long-chain polyunsaturated levels; and increased brain LPO levels. Although taurine is reported to be an antioxidant, exogenous taurine was embryopathic and caused increased apoptosis rates (caspase-3 activities); increased brain HoCys levels; increased oxidative-stress (decreased brain GSH levels); decreased brain long-chain polyunsaturated levels; and increased brain LPO levels. Combined EtOH and taurine treatments also caused increased apoptosis rates and oxidative stress. 1. Introduction Exogenous ethanol (EtOH) causes elevated brain and hepatic homocysteine (HoCys) levels, decreased brain and hepatic taurine levels, and increased apoptosis rates within embryonic chick brains and livers [1–3]. Exogenous EtOH and exogenous HoCys are both teratogenic in chick embryos. Exposure to either teratogen causes reduced brain masses, elevated brain lipid hydroperoxide (LPO) levels, elevated brain membrane lipid peroxidation intermediates, and elevated brain caspase-3 activities [4–8]. HoCys catabolism uses remethylation pathways and the transsulfuration pathway (Figure 1). In remethylation pathways, HoCys is remethylated back to methionine by using either betaine homocysteine methyltransferase (EC 2.1.1.15; non-folate-dependent remethylation), or the cobalamin-dependent enzyme, methionine synthase (EC 2.1.1.13), which uses 5-methyltetrahydrofolate as the methyl donor [9]. In the transsulfuration pathway, HoCys is converted to cystathionine through the use of cystathionine β-synthase (EC 4.2.1.22) and cystathionine is ultimately converted into α-ketobutyrate, reduced glutathione (GSH), or taurine [9, 10] (Figure 1). Figure 1: Homocysteine removal

References

[1]  B. N. Walcher and R. R. Miller Jr., “Ethanol-induced increased endogenous homocysteine levels and decreased ratios of SAM/SAH are only partially attenuated by exogenous glycine in developing chick brains,” Comparative Biochemistry and Physiology C, vol. 147, no. 1, pp. 11–16, 2008.
[2]  R. K. Barnett, S. L. Booms, T. Gura, M. Gushrowski, and R. R. Miller Jr., “Exogenous folate ameliorates ethanol-induced brain hyperhomocysteinemia and exogenous ethanol reduces taurine levels in chick embryos,” Comparative Biochemistry and Physiology C, vol. 150, no. 1, pp. 107–112, 2009.
[3]  K. N. Berlin, L. M. Cameron, M. Gatt, and R. R. Miller Jr., “Reduced de novo synthesis of 5-methyltetrahydrofolate and reduced taurine levels in ethanol-treated chick brains,” Comparative Biochemistry and Physiology C, vol. 152, no. 3, pp. 353–359, 2010.
[4]  R. R. Miller Jr., B. M. Olson, N. Rorick, A. L. Wittingen, and M. Bullock, “Embryonic exposure to exogenous α- and γ-tocopherol partially attenuates ethanol-induced changes in brain morphology and brain membrane fatty acid composition,” Nutritional Neuroscience, vol. 6, no. 4, pp. 201–212, 2003.
[5]  R. R. Miller Jr., C. M. Leanza, E. E. Phillips, and K. D. Blacquire, “Homocysteine-induced changes in brain membrane composition correlate with increased brain caspase-3 activities and reduced chick embryo viability,” Comparative Biochemistry and Physiology B, vol. 136, no. 3, pp. 521–532, 2003.
[6]  R. R. Miller Jr., C. M. Hay, T. R. Striegnitz, L. E. Honsey, C. E. Coykendall, and K. D. Blacquiere, “Exogenous glycine partially attenuates homocysteine-induced apoptosis and membrane peroxidation in chick embryos,” Comparative Biochemistry and Physiology C, vol. 144, no. 1, pp. 25–33, 2006.
[7]  R. R. Miller Jr., “Alcohol-induced membrane lipid peroxidation,” in Alcohol in Disease: Nutrient Interactions and Dietary Intake, V. R. Preedy and R. R. Watson, Eds., pp. 336–339, CRC Press, Boca Raton, Fla, USA, 2004.
[8]  M. L. Hancock and R. R. Miller Jr., “Resveratrol can only partially attenuate ethanol-induced oxidative stress in embryonic chick brains,” Nutritional Neuroscience, vol. 9, no. 3-4, pp. 121–129, 2006.
[9]  J. Selhub, “Homocysteine metabolism,” Annual Review of Nutrition, vol. 19, pp. 217–246, 1999.
[10]  R. R. Miller Jr., “Hyperglycemia-induced oxidative-stress, apoptosis, and embryopathy,” Journal of Pediatric Biochemistry, vol. 1, no. 4, pp. 309–324, 2011.
[11]  R. J. Huxtable, “Physiological actions of taurine,” Physiological Reviews, vol. 72, no. 1, pp. 101–164, 1992.
[12]  C. F. Baxter, C. G. Wasterlain, K. L. Hallden, and S. F. Pruess, “Effect of altered blood plasma osmolalities on regional brain amino acid concentrations and focal seizure susceptibility in the rat,” Journal of Neurochemistry, vol. 47, no. 2, pp. 617–624, 1986.
[13]  A. Abele, J. Borg, and J. Mark, “Cysteine sulfinic acid uptake in cultured neuronal and glial cells,” Neurochemical Research, vol. 8, no. 7, pp. 889–902, 1983.
[14]  R. C. Gupta and S. J. Kim, “Role of taurine in organs' dysfunction and in their alleviation,” Critical Care and Shock, vol. 6, no. 4, pp. 191–197, 2003.
[15]  H. Pasantes-Morales and R. Hernández-Benítez, “Taurine and brain development: trophic or cytoprotective actions?” Neurochemical Research, vol. 35, no. 12, pp. 1939–1943, 2010.
[16]  M. D. J. Kerai, C. J. Waterfield, S. H. Kenyon, D. S. Asker, and J. A. Timbrell, “Taurine: protective properties against ethanol-induced hepatic steatosis and lipid peroxidation during chronic ethanol consumption in rats,” Amino Acids, vol. 15, no. 1-2, pp. 53–76, 1998.
[17]  K. C. Hayes and J. A. Stuhrman, “Taurine in metabolism,” Annual Review of Nutrition, vol. 1, pp. 402–425, 1981.
[18]  J. A. Stuhrman, “Taurine in development,” Physiology Reviews, vol. 73, no. 1, pp. 119–147, 1993.
[19]  J. Liu, L. Liu, and H. Chen, “Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction,” Neuroscience, vol. 181, pp. 265–270, 2011.
[20]  V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” Journal of Morphology, vol. 88, pp. 49–92, 1951.
[21]  M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[22]  R. R. Miller Jr., C. M. Hay, T. R. Striegnitz, L. E. Honsey, C. E. Coykendall, and K. D. Blacquiere, “Exogenous glycine partially attenuates homocysteine-induced apoptosis and membrane peroxidation in chick embryos,” Comparative Biochemistry and Physiology C, vol. 144, no. 1, pp. 25–33, 2006.
[23]  P. Yi, S. Melnyk, M. Pogribna, I. P. Pogribny, R. J. Hine, and S. J. James, “Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation,” Journal of Biological Chemistry, vol. 275, no. 38, pp. 29318–29323, 2000.
[24]  M. E. Anderson, “Determination of glutathione and glutathione disulfide in biological samples,” Methods in Enzymology, vol. 113, pp. 548–555, 1985.
[25]  M. E. Anderson and A. Meister, “Preparation of γ-glutamyl amino acids by chemical and enzymatic methods,” Methods in Enzymology, vol. 113, pp. 555–564, 1985.
[26]  C. J. Waterfield, “Determination of taurine in biological samples and isolated hepatocytes by high-performance liquid chromatography with fluorimetric detection,” Journal of Chromatography B, vol. 657, no. 1, pp. 37–45, 1994.
[27]  R. R. Miller Jr., “Ethanol-induced lipid peroxidation and apoptosis in embryopathy,” in Alcohol, Nutrition, and Health Consequences, R. R. Watson, V. R. Preedy, and S. Zibadi, Eds., pp. 35–62, Springer Science, New York, NY, USA, 2013.
[28]  J. Folch, M. Lees, and G. H. Sloane Stanely, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957.
[29]  J. C. Dittmer and M. A. Wells, “Quantitative and qualitative analysis of lipids and lipid components,” Methods in Enzymology, vol. 14, pp. 482–530, 1969.
[30]  L. D. Metcalfe, A. A. Schmitz, and J. R. Pelka, “Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis,” Analytical Chemistry, vol. 38, no. 3, pp. 514–515, 1966.
[31]  B. Mihaljevi?, B. Katu?in-Ra?em, and D. Ra?em, “The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response,” Free Radical Biology and Medicine, vol. 21, no. 1, pp. 53–63, 1996.
[32]  R. R. Miller Jr., D. J. Coughlin, E. S. Fraser-Thomson, E. C. Noe, A. Palenick, and E. B. Voorhees, “Ethanol- and Fe+2-induced membrane lipid oxidation is not additive in developing chick brains,” Comparative Biochemistry and Physiology C, vol. 134, no. 2, pp. 267–279, 2003.
[33]  N. M. Van Gelder and F. Belanger, “Embryonic exposure to high taurine: a possible nutritional contribution to Friedreich's ataxia,” Journal of Neuroscience Research, vol. 20, no. 3, pp. 383–389, 1988.
[34]  M. R. Hayden and S. C. Tyagi, “Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation,” Nutrition Journal, vol. 3, article 4, 2004.
[35]  L. Guemouri, Y. Artur, B. Herbeth, C. Jeandel, G. Cuny, and G. Siest, “Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood,” Clinical Chemistry, vol. 37, no. 11, pp. 1932–1937, 1991.
[36]  R. Margis, C. Dunand, F. K. Teixeira, and M. Margis-Pinheiro, “Glutathione peroxidase family—an evolutionary overview,” FEBS Journal, vol. 275, no. 15, pp. 3959–3970, 2008.
[37]  I. Ueki and M. H. Stipanuk, “Enzymes of the taurine biosynthetic pathway are expressed in rat mammary gland,” Journal of Nutrition, vol. 137, no. 8, pp. 1887–1894, 2007.
[38]  N. Bennett, “Study of yolk-sac endoderm organogenesis in the chick using a specific enzyme (cysteine lyase) as a marker of cell differentiation.,” Journal of Embryology and Experimental Morphology, vol. 29, no. 1, pp. 159–174, 1973.
[39]  F. Chapeville and P. Fromageot, “‘Vestigial’ enzymes during embryonic development,” Advances in Enzyme Regulation, vol. 5, pp. 155–158, 1967.
[40]  W. G. Martin, “Sulfate metabolism and taurine synthesis in the chick,” Poultry Science, vol. 51, no. 2, pp. 608–612, 1972.
[41]  W. G. Martin, N. L. Sass, L. Hill, S. Tarka, and R. Truex, “The synthesis of taurine from sulfate. IV. An alternate pathway for taurine synthesis by the rat,” Proceedings of the Society for Experimental Biology and Medicine, vol. 141, no. 2, pp. 632–633, 1972.
[42]  N. L. Sass and W. G. Martin, “The synthesis of taurine from sulfate. 3. Further evidence for the enzymatic pathway in chick liver,” Proceedings of the Society for Experimental Biology and Medicine, vol. 139, no. 3, pp. 755–761, 1972.
[43]  R. C. Tomichek, N. L. Sass, and W. G. Martin, “Role of vitamins in taurine synthesis from sulfate by the chick,” Journal of Nutrition, vol. 102, no. 3, pp. 313–318, 1972.
[44]  R. R. Miller Jr., E. J. Touney, W. J. Vandivier, and F. J. Raymond, “A developmental profile of the effects of ethanol on the levels of chick brain phospholipids,” Comparative Biochemistry and Physiology C, vol. 120, no. 1, pp. 91–98, 1998.
[45]  M. T. Busch, L. Milakofsky, T. Hare, B. Nibbio, and A. Epple, “Impact of ethanol stress on components of the allantoic fluid of the chicken embryo,” Comparative Biochemistry and Physiology A, vol. 116, no. 2, pp. 125–129, 1997.
[46]  G. Y. Sun and A. Y. Sun, “Ethanol and membrane lipids,” Alcoholism Clinical and Experimental Research, vol. 9, no. 2, pp. 164–180, 1985.
[47]  K. S. Opstad, B. A. Bell, J. R. Griffiths, and F. A. Howe, “Taurine: a potential marker of apoptosis in gliomas,” British Journal of Cancer, vol. 100, no. 5, pp. 789–794, 2009.
[48]  F. Lang, J. Madlung, D. Siemen, C. Ellory, A. Lepple-Wienhues, and E. Gulbins, “The involvement of caspases in the CD95(Fas/Apo-1)- but not swelling- induced cellular taurine release from Jurkat T-lymphocytes,” Pflugers Archiv European Journal of Physiology, vol. 440, no. 1, pp. 93–99, 2000.
[49]  J. Morán, X. Hernández-Pech, H. Merchant-Larios, and H. Pasantes-Morales, “Release of taurine in apoptotic cerebellar granule neurons in culture,” Pflugers Archiv European Journal of Physiology, vol. 439, no. 3, pp. 271–277, 2000.
[50]  M. B. Friis, C. R. Friborg, L. Schneider et al., “Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts,” Journal of Physiology, vol. 567, no. 2, pp. 427–443, 2005.
[51]  P. F. Surai, “Tissue-specific changes in the activities of antioxidant enzymes during the development of the chicken embryo,” British Poultry Science, vol. 40, no. 3, pp. 397–405, 1999.
[52]  S. Attwood, “Caffeinated alcohol beverages: a public concern,” Alcohol and Alcoholism, vol. 47, no. 4, pp. 370–371, 2012.
[53]  C. A. Marczinski, “Alcohol mixed with energy drinks: consumption patterns and motivations for use in U.S. college students,” International Journal of Environmental Research and Public Health, vol. 8, no. 8, pp. 3232–3245, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413