全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design, Synthesis, and Evaluation of New Tripeptides as COX-2 Inhibitors

DOI: 10.1155/2013/606282

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation. It exists mainly in two isoforms COX-1 and COX-2. The conventional nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects because they inhibit both isoforms. Recent data demonstrate that the overexpression of these enzymes, and in particular of cyclooxygenases-2, promotes multiple events involved in tumorigenesis; in addition, numerous studies show that the inhibition of cyclooxygenases-2 can delay or prevent certain forms of cancer. Agents that inhibit COX-2 while sparing COX-1 represent a new attractive therapeutic development and offer a new perspective for a further use of COX-2 inhibitors. The present study extends the evaluation of the COX activity to all 203 possible natural tripeptide sequences following a rational approach consisting in molecular modeling, synthesis, and biological tests. Based on data obtained from virtual screening, only those peptides with better profile of affinity have been selected and classified into two groups called S and E. Our results suggest that these novel compounds may have potential as structural templates for the design and subsequent development of the new selective COX-2 inhibitors drugs. 1. Introduction The main cause of the inflammation is the prostaglandins overproduction, which are synthesized by cyclooxygenase enzymes [1]. Prostaglandin-endoperoxide synthase, commonly called cyclooxygenase (COX), is an intracellular enzyme required for the conversion of arachidonic acid to prostaglandins. The two best-known COX isoforms are referred to as COX-1 and COX-2 for the order in which they were discovered [2]. The first isozyme is constitutively expressed in resting cells of most tissues, functions as a housekeeping enzyme, and is responsible for maintaining homeostasis (gastric and renal integrity) and normal production of prostaglandins; vice versa, the COX-2 expression is induced by infection and it is responsible for the inflammatory response. Such a difference suggested to report COX-1 as the constitutive form and COX-2 as the inducible one. More recently, the constitutive presence of COX-2 has been highlighted in brain, kidney, and endothelial cells but is virtually absent in most other tissues. In particular, COX-2 expression is significantly upregulated as part of various acute and chronic inflammatory conditions and in neoplastic tissues. The design of a selective inhibitor is difficult as the COX-1 and COX-2 binding sites are almost

References

[1]  R. K. Somvanshi, A. Kumar, S. Kant et al., “Surface plasmon resonance studies and biochemical evaluation of a potent peptide inhibitor against cyclooxygenase-2 as an anti-inflammatory agent,” Biochemical and Biophysical Research Communications, vol. 361, no. 1, pp. 37–42, 2007.
[2]  M. E. Turini and R. N. DuBois, “CYCLOOXYGENASE-2: a therapeutic target,” Annual Review of Medicine, vol. 53, pp. 35–57, 2002.
[3]  S. K. Sharma, B. J. Al-Hourani, M. Wuest et al., “Synthesis and evaluation of fluorobenzoylated di- and tripeptides as inhibitors of cyclooxygenase-2 (COX-2),” Bioorganic & Medicinal Chemistry, vol. 20, pp. 2221–2226, 2012.
[4]  K. Gupta, B. S. Selinsky, C. J. Kaub, A. K. Katz, and P. J. Loll, “The 2.0 ? resolution crystal structure of prostaglandin H 2 synthase-1: structural insights into an unusual peroxidase,” Journal of Molecular Biology, vol. 335, no. 2, pp. 503–518, 2004.
[5]  S. W. Rowlinson, J. R. Kiefer, J. J. Prusakiewicz et al., “A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385,” Journal of Biological Chemistry, vol. 278, no. 46, pp. 45763–45769, 2003.
[6]  Schr?dinger, LLC., New York, NY, USA, 2010.
[7]  T. A. Halgren, “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF9,” Journal of Computational Chemistry, vol. 17, pp. 490–519, 1996.
[8]  T. A. Halgren, “Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions,” Journal of Computational Chemistry, vol. 17, pp. 520–552, 1996.
[9]  T. A. Halgren, “MMFF VI. MMFF94s Option for energy minimization studies,” Journal of Computational Chemistry, vol. 20, pp. 720–729, 1999.
[10]  T. A. Halgren, “MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries,” Journal of Computational Chemistry, vol. 20, pp. 730–748, 1999.
[11]  F. Mohamadi, N. G. J. Richards, W. C. Guida et al., “MacroModel-An integrated software system for modeling organic and bioorganic molecules using molecular mechanics,” Journal of Computational Chemistry, vol. 11, pp. 440–467, 1990.
[12]  E. Atherton and R. C. Sheppard, Solid-Phase Peptide Synthesis: A Practical Approach, IRL, Oxford, UK, 1989.
[13]  S. Vilar, E. Quezada, L. Santana et al., “Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin-resveratrol hybrids,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 2, pp. 257–261, 2006.
[14]  R. Fioravanti, A. Bolasco, F. Manna et al., “Synthesis and biological evaluation of N-substituted-3, 5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors,” European Journal of Medicinal Chemistry, vol. 45, pp. e6135–e6138, 2010.
[15]  E. P. Spugnini, G. Citro, and A. Baldi, “Cox inhibitors as potential chemotherapic drugs for mesothelioma,” Current Respiratory Medicine Reviews, vol. 3, no. 1, pp. 15–18, 2007.
[16]  F. A. Sinicrope, “Targeting cyclooxygenase-2 for prevention and therapy of colorectal cancer,” Molecular Carcinogenesis, vol. 45, no. 6, pp. 447–454, 2006.
[17]  J. B. Méric, S. Rottey, K. Olaussen et al., “Cyclooxygenase-2 as a target for anticancer drug development,” Critical Reviews in Oncology/Hematology, vol. 59, no. 1, pp. 51–64, 2006.
[18]  D. Mazhar, R. Ang, and J. Waxman, “COX inhibitors and breast cancer,” British Journal of Cancer, vol. 94, no. 3, pp. 346–350, 2006.
[19]  S. Ali, B. F. El-Rayes, F. H. Sarkar, and P. A. Philip, “Simultaneous targeting of the epidermal growth factor receptor and cyclooxygenase-2 pathways for pancreatic cancer therapy,” Molecular Cancer Therapeutics, vol. 4, no. 12, pp. 1943–1951, 2005.
[20]  T. Wu, “Cyclooxygenase-2 in hepatocellular carcinoma,” Cancer Treatment Review, vol. 32, pp. 28–44, 2006.
[21]  I. Cardillo, E. P. Spugnini, A. Verdina, R. Galati, G. Citro, and A. Baldi, “Cox and mesothelioma: an overview,” Histology and Histopathology, vol. 20, no. 4, pp. 1267–1274, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133