全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Metabolic Fate of the Increased Yeast Amino Acid Uptake Subsequent to Catabolite Derepression

DOI: 10.1155/2013/461901

Full-Text   Cite this paper   Add to My Lib

Abstract:

Catabolite repression (CCR) regulates amino acid permeases in Saccharomyces cerevisiae via a TOR-kinase mediated mechanism. When glucose, the preferred fuel in S. cerevisiae, is substituted by galactose, amino acid uptake is increased. Here we have assessed the contribution and metabolic significance of this surfeit of amino acid in yeast undergoing catabolite derepression (CDR). L-[U-14C]leucine oxidation was increased 15 ± 1 fold in wild type (WT) strain grown in galactose compared to glucose. Under CDR, leucine oxidation was (i) proportional to uptake, as demonstrated by decreased uptake and oxidation of leucine in strains deleted of major leucine permeases and (ii) entirely dependent upon the TCA cycle, as cytochrome c1 (Cyt1) deleted strains could not grow in galactose. A regulator of amino acid carbon entry into the TCA cycle, branched chain ketoacid dehydrogenase, was also increased 29 ± 3 fold under CCR in WT strain. Protein expression of key TCA cycle enzymes, citrate synthase (Cs), and Cyt1 was increased during CDR. In summary, CDR upregulation of amino acid uptake is accompanied by increased utilization of amino acids for yeast growth. The mechanism for this is likely to be an increase in protein expression of key regulators of the TCA cycle. 1. Introduction In S. cerevisiae and other yeast, growth in glucose as the carbon source represses transcription of numerous genes (termed glucose repression or carbon catabolite repression, CCR) [1, 2]. Yeast grown with alternate carbon source (e.g., galactose or glycerol) undergoes catabolite derepression. During catabolite derepression (a condition akin to metabolic stress) yeast metabolism shifts from fermentative to respiratory and carbon is shunted to the mitochondrial TCA cycle thus increasing electron transport and respiration [3, 4]. We recently reported that during catabolite derepression (with galactose or glycerol as carbon source), there is an increase in yeast amino acid permease gene and protein expression, amino acid uptake, and oxygen consumption [5]. We further demonstrated that the signalling involved in the coordination of this process, via TOR1 [5], a phenomenon that is distinct from that involved in diauxic shift, the recurring life cycle in the natural history of yeast [6]. It has also been known for some time that synthesis of respiratory enzymes is increased in the presence of galactose compared to glucose [7]. Based upon these observations we put forward a prima facie model [5] suggesting that the surfeit of amino acids during catabolite derepression in yeast may serve as

References

[1]  M. Carlson, “Glucose repression in yeast,” Current Opinion in Microbiology, vol. 2, no. 2, pp. 202–207, 1999.
[2]  J. M. Gancedo, “The early steps of glucose signalling in yeast,” FEMS Microbiology Reviews, vol. 32, no. 4, pp. 673–704, 2008.
[3]  P. W. Coschigano and B. Magasanik, “The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases,” Molecular and Cellular Biology, vol. 11, no. 2, pp. 822–832, 1991.
[4]  S. J. Lin, M. Kaeberlein, A. A. Andalis et al., “Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration,” Nature, vol. 418, no. 6895, pp. 344–348, 2002.
[5]  G. J. Peter, L. Düring, and A. Ahmed, “Carbon catabolite repression regulates amino acid permeases in Saccharomyces cerevisiae via the TOR signaling pathway,” The Journal of Biological Chemistry, vol. 281, no. 9, pp. 5546–5552, 2006.
[6]  J. L. DeRisi, V. R. Iyer, and P. O. Brown, “Exploring the metabolic and genetic control of gene expression on a genomic scale,” Science, vol. 278, no. 5338, pp. 680–686, 1997.
[7]  E. S. Polakis, W. Bartley, and G. A. Meek, “Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources,” Biochemical Journal, vol. 97, no. 1, pp. 298–302, 1965.
[8]  L. Düring-Olsen, B. Regenberg, C. Gjermansen, M. C. Kielland-Brandt, and J. Hansen, “Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases,” Current Genetics, vol. 35, no. 6, pp. 609–617, 1999.
[9]  E. A. Winzeler, D. D. Shoemaker, A. Astromoff et al., “Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis,” Science, vol. 285, no. 5429, pp. 901–906, 1999.
[10]  W. K. Huh, J. V. Falvo, L. C. Gerke et al., “Global analysis of protein localization in budding yeast,” Nature, vol. 425, no. 6959, pp. 686–691, 2003.
[11]  B. Regenberg, L. Düring-Olsen, M. C. Kielland-Brandt, and S. Holmberg, “Substrate specificity and gene expression of the amino acid permeases in Saccharomyces cerevisiae,” Current Genetics, vol. 36, no. 6, pp. 317–328, 1999.
[12]  S. Igarashi and W. L. Hinze, “Luminol chemiluminescent determination of glucose or glucose oxidase activity using an inverted micellar system,” Analytical Chemistry, vol. 60, no. 5, pp. 446–450, 1988.
[13]  K. Tanaka, R. Mandell, and V. E. Shih, “Metabolsim of [1-(14)C] and [2-(14)C] leucine in cultured skin fibroblasts from patients with isovaleric acidemia. Characterization of metabolic defects,” The Journal of Clinical Investigation, vol. 58, no. 1, pp. 164–172, 1976.
[14]  J. S. Hothersall, A. L. Greenbaum, and P. McLean, “The functional significance of the pentose phosphate pathway in synaptosomes: protection against peroxidative damage by catecholamines and oxidants,” Journal of Neurochemistry, vol. 39, no. 5, pp. 1325–1332, 1982.
[15]  A. Ahmed, F. Sesti, N. Ilan, T. M. Shih, S. L. Sturley, and S. A. N. Goldstein, “A molecular target for viral killer toxin: TOK1 potassium channels,” Cell, vol. 99, no. 3, pp. 283–291, 1999.
[16]  H. U. Bergmeyer, Methods of Enzymatic Analysis, Chemie Gmbh, Academic Press, New York, NY, USA, 1963.
[17]  H. J. Schüller, “Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae,” Current Genetics, vol. 43, no. 3, pp. 139–160, 2003.
[18]  D. Livas, M. J. H. Almering, J. M. Daran, J. T. Pronk, and J. M. Gancedo, “Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A,” BMC Genomics, vol. 12, article 405, 2011.
[19]  M. G. Slattery, D. Liko, and W. Heideman, “Protein kinase A, TOR, and glucose transport control the response to nutrient repletion in Saccharomyces cerevisiae,” Eukaryotic Cell, vol. 7, no. 2, pp. 358–367, 2008.
[20]  J. K. Kelleher, B. M. Bryan 3rd. B.M., R. T. Mallet, A. L. Holleran, A. N. Murphy, and G. Fiskum, “Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios,” Biochemical Journal, vol. 246, no. 3, pp. 633–639, 1987.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133