全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-obvious Problems in Clark Electrode Application at Elevated Temperature and Ways of Their Elimination

DOI: 10.1155/2013/249752

Full-Text   Cite this paper   Add to My Lib

Abstract:

Well-known cause of frequent failures of closed oxygen sensors is the appearance of gas bubbles in the electrolyte. The problem is traditionally associated with insufficient sealing of the sensor that is not always true. Study of a typical temperature regime of measurement system based on Clark sensor showed that spontaneous release of the gas phase is a natural effect caused by periodic warming of the sensor to a temperature of the test liquid. The warming of the sensor together with the incubation medium causes oversaturation of electrolyte by dissolved gases and the allocation of gas bubbles. The lower rate of sensor heating in comparison with the medium reduces but does not eliminate the manifestation of this effect. It is experimentally established, that with each cycle of heating of measuring system up to 37°C followed by cooling the volume of gas phase in the electrolyte (KCl; 60?g/L; 400?μL) increased by 0.6?μL approximately. Thus, during just several cycles it can dramatically degrade the characteristics of the sensor. A method was developed in which the oxygen sensor is heated in contact with the liquid, (depleted of dissolved gases), allowing complete exclusion of the above-mentioned effect. 1. Introduction Closed polarographic oxygen sensors (Clark electrodes and its varieties) are convenient and still the most widely used tools for measuring of oxygen consumption in various biochemical studies [1–4]. However, users of Clark electrode are often forced to face a number of problems, the causes of which are not obvious. Usually these are instability of readings, uniform signal drift, changes in sensor response time, formation of gas bubbles in electrolyte, and so forth. Unfortunately, these issues are not adequately addressed in the literature, as the results of failed measurements are not published, and the deviations are traditionally explained by damage of the membrane [5]. This greatly complicates the analysis of causes and, consequently, improvement of equipment and methods of measurement. These problems are considerably aggravated when Clark electrode is applied for measurements in the heated solutions, even using an electronic temperature compensation [6]. For example, investigators of the current experiment found that after heating the incubation medium up to operating temperature (37°C) and saturating it by atmospheric oxygen, the results obtained during the first hour of work always significantly differed from the following ones. After several days of recurrent work at elevated temperature, the sensor showed a progressive decrease in

References

[1]  C.-C. Wu, H.-N. Luk, Y.-T. T. Lin, and C.-Y. Yuan, “A Clark-type oxygen chip for in situ estimation of the respiratory activity of adhering cells,” Talanta, vol. 81, no. 1-2, pp. 228–234, 2010.
[2]  L. ?erák, R. Jelínek, and V. Hauser, “Electrochemical method for the assessment of oxygen consumption in biological objects with an uneven distribution of respiration centres,” Journal of Electroanalytical Chemistry, vol. 226, no. 1-2, pp. 193–198, 1987.
[3]  L. Ceriotti, A. Kob, S. Drechsler et al., “Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system,” Analytical Biochemistry, vol. 371, no. 1, pp. 92–104, 2007.
[4]  D. Pesta and E. Gnaiger, “High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle,” Methods in Molecular Biology, vol. 810, pp. 25–58, 2012.
[5]  Microcathode Oxygen Electrode SI1302, Manual, Strathkelvin's Instruments, North Lanarkshire, Scotland.
[6]  D. J. Murphy, N. G. Larson, and B. C. Edwards, Improvements to the SBE 43 Oxygen Calibration Algorithm, Ocean Sciences Meeting, Orlando, Fla, USA, 2008.
[7]  C. Oldham, “A fast-response oxygen sensor for use on fine-scale and microstructure CTD profilers,” Limnology & Oceanography, vol. 39, no. 8, pp. 1959–1966, 1994.
[8]  D. Cassart, T. Fett, M. Sarlet, E. Baise, F. Coignoul, and D. Desmecht, “Flow cytometric probing of mitochondrial function in equine peripheral blood mononuclear cells,” BMC Veterinary Research, vol. 3, article 25, 2007.
[9]  M. Ljubkovic, Y. Mio, J. Marinovic et al., “Isoflurane preconditioning uncouples mitochondria and protects against hypoxia-reoxygenation,” American Journal of Physiology, vol. 292, no. 5, pp. C1583–C1590, 2007.
[10]  I. Fatt, The Polarographic Oxygen Sensor: Its Theory of Operation and Its Application in Biology, Medicine, and Technology, Robert E. Krieger, Malabar, Fla, USA, 1982.
[11]  L. C. Clark Jr., R. Wolf, D. Granger, and Z. Taylor, “Continuous recording of blood oxygen tensions by polarography,” Journal of Applied Physiology, vol. 6, no. 3, pp. 189–193, 1953.
[12]  H. Forstner and E. Gnaiger, Polarographic Oxygen Sensors: Aquatic Andphysiological Applications, Springer, New York, NY, USA, 1983.
[13]  J. K. Gundersen, N. B. Ramsing, and R. N. Glud, “Predicting the signal of O2 microsensors from physical dimensions, temperature, salinity, and O2 concentration,” Limnology and Oceanography, vol. 43, no. 8, pp. 1932–1937, 1998.
[14]  S. Weisenberger and A. Schumpe, “Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K,” AIChE Journal, vol. 42, no. 1, pp. 298–300, 1996.
[15]  E. Gnaiger, “Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function,” in Mitochondrial Dysfunction in Drug-Induced Toxicity, J. A. Dykens and Y. Will, Eds., pp. 327–352, John Wiley & Sons, New York, NY, USA, 2008.
[16]  F. F. Lee, Comprehensive analysis, Henry's law constant determination, and photocatalytic degradation of polychlorinated biphenyls (PCBs) and/or other persistent organic pollutants, POPs [Ph.D. dissertation], State University of New York at Albany, 2007.
[17]  P. Fogg and J. Sangster, Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Weinheim, Germany, 2003.
[18]  F. L. Smith and A. H. Harvey, “Avoid common pitfalls when using Henry's law,” Chemical Engineering Progress, vol. 103, no. 9, pp. 33–39, 2007.
[19]  D. W. Green and R. H. Perry, Perry's Chemical Engineers' Handbook, McGraw-Hill, 6th edition, 1984.
[20]  R. Sander, Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, Mainz, Germany, 1999.
[21]  Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals & Applications, McGraw-Hill, 4th edition, 2011.
[22]  K. H. Mancy, D. A. Okun, and C. N. Reilley, “A galvanic cell oxygen analyzer,” Journal of Electroanalytical Chemistry, vol. 4, no. 2, pp. 65–92, 1962.
[23]  M. V. Miniaev and L. I. Voronchikhina, “Ambient air interference in oxygen intake measurements in liquid incubating media with the use of open polarographic cells,” Aviakosmicheskaia i Ekologicheskaia Meditsina, vol. 41, no. 2, pp. 64–68, 2007 (Russian).
[24]  I. Helm, L. Jalukse, and I. Leito, “Measurement uncertainty estimation in amperometric sensors: a tutorial review,” Sensors, vol. 10, no. 5, pp. 4430–4455, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413