全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study

DOI: 10.1155/2013/193230

Full-Text   Cite this paper   Add to My Lib

Abstract:

A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) “true/false” SVET check of the probable zones only passing through the pit’s centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved “true” zones could determine the corrosion rate in any of the zones. 1. Introduction The increased application of self-constructed LabVIEW-based chemical virtual instruments (VIs) is due to their flexibility and ability to satisfy all the specific user requirements combined with the simplicity of the construction. Many configurations of LabVIEW-based VI have been reported until now corresponding to their specific chemical application defined by the user needs. Meng et al. [1] described a VI system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution, comprising a high input impedance voltmeter (widely used in measuring the EM generated by ion selective electrode), a homemade conditioning circuit, data acquisition board, and a computer. It can calibrate automatically the slope, temperature, and positioning. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatic processing of testing data, generating a report of results, and other functions. This method simplifies the experimental operation, avoids complicated procedures of manual data processing and personal error, and improves veracity and repeatability of the experiment results. Wang et al. [2] reported a LabVIEW-based chemical virtual instrument (VI) for temperatures and pressures measurement. By selecting hardware modules, such as the PCI-DAQ card or serial port method, and the software modules, different kinds of sensors can be used for creating different chemical instruments allowing extremely flexible solutions for automatic measurements in the physical chemistry research. Lenehan et al. [3] developed a LabVIEW-based

References

[1]  H. Meng, J.-Y. Li, and Y.-H. Tang, “Virtual instrument for determining rate constant of second-order reaction by pX based on labVIEW 8.0,” Journal of Automated Methods and Management in Chemistry, vol. 2009, Article ID 849704, 7 pages, 2009.
[2]  W. Wang, J. Li, and Q. Wu, “The design of a chemical virtual instrument based on LabVIEW for determining temperatures and pressures,” Journal of Automated Methods and Management in Chemistry, vol. 2007, Article ID 68143, 7 pages, 2007.
[3]  C. E. Lenehan, N. W. Barnett, and S. W. Lewis, “Design of LabVIEW-based software for the control of sequential injection analysis instrumentation for the determination of morphine,” Journal of Automated Methods and Management in Chemistry, vol. 24, no. 4, pp. 99–103, 2002.
[4]  A. R. Bowie, E. P. Achterberg, S. Ussher, and P. J. Worsfold, “Design of an automated flow injection-chemiluminescence instrument incorporating a miniature photomultiplier tube for monitoring picomolar concentrations of iron in seawater,” Journal of Automated Methods and Management in Chemistry, vol. 2005, no. 2, pp. 37–43, 2005.
[5]  L. Jaffe and R. Nucitelli, “An ultrasensitive vibrating probe for measuring steady extracellular currents,” Journal of Cell Biology, vol. 63, no. 2, pp. 614–628, 1974.
[6]  H. S. Isaacs, “Effect of height on the current distribution measured with a vibrating electrode probe,” Journal of the Electrochemical Society, vol. 138, no. 3, pp. 722–728, 1991.
[7]  H. Isaacs, Localized Corrosion, R. Staehle, B. Brown, J. Kruger and A. Agarwal, Eds., NACE, Houston, Tex, USA, p. 158, 1974.
[8]  S. Fujimoto and T. Shibata, “Measurement and evaluation of corrosion and corrosion protection (3). Characterization of localized corrosion: scanning vibrating electrode technique,” Denki Kagaku, vol. 64, no. 9, pp. 967–971, 1996.
[9]  H. S. Isaacs and Y. Ishikawa, “Current and potential transients during localized corrosion of stainless steel,” Journal of the Electrochemical Society, vol. 132, no. 6, pp. 1288–1293, 1985.
[10]  K. R. Trethewey, D. A. Sargeant, D. J. Marsh, and A. A. Tamimi, “Applications of the scanning reference electrode technique to localized corrosion,” Corrosion Science, vol. 35, no. 1-4, pp. 127–129, 1993.
[11]  E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial Electrochemistry, p. 216, Addison-Weseley, Reading, Mass, USA, 1975.
[12]  R. S. Thornhill and U. R. Evans, “109. The electrochemistry of the rusting process along a scratch-line on iron,” Journal of the Chemical Society, pp. 614–621, 1938.
[13]  R. S. Thornhill and U. R. Evans, “402. The electrochemistry of the corrosion of partly immersed zinc,” Journal of the Chemical Society, pp. 2109–2114, 1938.
[14]  R. Ramos, R. K. Zlatev, M. S. Stoytcheva, B. Valdez, and S. Kiyota, “Novel SVET approach and its application for rapid pitting corrosion studies of chromatized aerospatiale aluminum alloy,” Novel SVET ECS Transactions, vol. 29, no. 1, pp. 23–31, 2010.
[15]  R. Ramos, R. K. Zlatev, M. S. Stoytcheva, B. Valdez, S. Flores, and A. M. Herrera, “Pitting corrosion characterization by SVET applying a synchronized noise suppression technique,” ECS Transactions, vol. 29, no. 1, pp. 33–42, 2010.
[16]  NI-IMAQdx User Manual, September 2006 Part Number 371970A-01, National Instruments Corporation, http://www.ni.com/pdf/manuals/371970a.pdf.
[17]  Counting Particles or Cells Using IMAQ Vision National Instruments Corporation, http://www.ni.com/white-paper/3169/en.
[18]  Analisis y procesamiento de imágenes, National Instruments Alliance Member, http://www.tracnova.com/tracnova-pub/An%E1lisis%20&%20Proc.Im%E1genes.pdf.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413