全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Naturally Occurring Xanthones: Chemistry and Biology

DOI: 10.1155/2013/621459

Full-Text   Cite this paper   Add to My Lib

Abstract:

Xanthones are one of the biggest classes of compounds in natural product chemistry. A number of xanthones have been isolated from natural sources of higher plants, fungi, ferns, and lichens. They have gradually risen to great importance because of their medicinal properties. This review focuses on the types, isolation, characterization, biological applications, and biosynthesis of naturally occurring xanthones isolated so far. Different physicochemical and instrumental methods such as liquid-solid and liquid-liquid extraction, TLC, flash chromatography, column chromatography, IR, 1H NMR and 13C NMR spectroscopy, GLC, HPLC, GC, and LCMS have been widely used for isolation and structural elucidation of xanthones. Hepatoprotective, anticarcinogenic, antileprosy, antimalarial, antioxidant, anticholinergic, mutagenicity, radioprotective, immunomodulatory, antibone resorption, antiparasitic, neuraminidase inhibitory, anticomplement, antibacterial, antifungal, algicidal, anti-HIV, cardioprotective, antitumoral, antidiabetes, antihyperlipidemic, antiatherogenic, anti-inflammatory, antiulcer, antidiabetic, hypolipidemic, analgesic, antiasthmatic, antihistaminic, antiamoebic, diuretic, antidiarrheal, larvicidal, and ovicidal activities have been reported for natural occurring xanthones. To a certain extent, this review provides necessary foundation for further research and development of new medicines. 1. Introduction Xanthones are secondary metabolites commonly occurring in higher plant families, fungi, and lichen [1]. Their pharmacological properties have raised great interest. Structures of xanthones are related to that of flavonoids and their chromatographic behaviours are also similar. Flavonoids are frequently encountered in nature, whereas xanthones are found in limited number of families. Xanthones always occur in the families Gentianaceae, Guttiferae, Moraceae, Clusiaceae, and Polygalaceae. Xanthones are sometimes found as the parent polyhydroxylated compounds but most are mono- or polymethyl ethers or are found as glycosides [2]. Unlike iridoids, xanthones are apparently not present in all plant species investigated in the family Gentianaceae. This is documented by the systematic work of Hostettmann et al. [3]. Natural occurrence of 12 xanthones in higher plants and 4 in fungi has been reviewed by Roberts in 1961 and by Dean in 1963 [4, 5]. Gottlieb [6] mentioned the isolation of 60 xanthones from higher plants and 7 from fungi, whereas Carpenter et al. [7] listed 82 xanthones from higher plants. Gunasekera [8] recorded 183 xanthones from 5 families of

References

[1]  M. L. Cardona, I. Fernández, J. R. Pedro, and A. Serrano, “Xanthones from Hypericum reflexum,” Phytochemistry, vol. 29, no. 9, pp. 3003–3006, 1990.
[2]  K. Hostettmann and I. Miura, “A new Xanthone diglucoside from Swertia perennis L.,” Helvetica Chimica Acta, vol. 60, pp. 262–264, 1977.
[3]  K. M. Hostettmann, K. Hostettmann, and O. Sticher, “Xanthones, flavones and secoiridoids of american Gentiana species,” Phytochemistry, vol. 20, no. 3, pp. 443–446, 1981.
[4]  J. C. Roberts, “Naturally occurring xanthones,” Chemical Reviews, vol. 61, no. 6, pp. 591–605, 1961.
[5]  F. M. Dean, Naturally Occurring Oxygen Ring Compounds, Butterworth, London, UK, 1963.
[6]  O. R. Gottlieb, “Biogenetic proposals regarding aucuparins and xanthones,” Phytochemistry, vol. 7, no. 3, pp. 411–421, 1968.
[7]  I. Carpenter, H. D. Locksley, and F. Scheinmann, “Xanthones in higher plants: biogenetic proposals and a chemotaxonomic survey,” Phytochemistry, vol. 8, no. 10, pp. 2013–2025, 1969.
[8]  S. P. Gunasekera, University of Sri Lanka, Peradeniya Campus, Peradeniya, Sri Lanka, 1976.
[9]  L. M. M. Vieira and A. Kijjoa, “Naturally-occurring xanthones: recent developments,” Current Medicinal Chemistry, vol. 12, no. 21, pp. 2413–2446, 2005.
[10]  T. Bo and H. Liu, “Separation methods for pharmacologically active xanthones,” Journal of Chromatography B, vol. 812, no. 1-2, pp. 165–174, 2004.
[11]  J. Pedraza-Chaverri, N. Cárdenas-Rodríguez, M. Orozco-Ibarra, and J. M. Pérez-Rojas, “Medicinal properties of mangosteen (Garcinia mangostana),” Food and Chemical Toxicology, vol. 46, no. 10, pp. 3227–3239, 2008.
[12]  S. Mandal, P. C. Das, and P. C. Joshi, “Naturally occuring xanthones from terrestrial flora,” Journal of Indian Chemical Society, vol. 69, pp. 611–636, 1992.
[13]  M. U. S. Sultanbawa, “Xanthonoids of tropical plants,” Tetrahedron, vol. 36, no. 11, pp. 1465–1506, 1980.
[14]  T. B. P. Oldenburg, H. Wilkes, B. Horsfield, A. C. T. Van Duin, D. Stoddart, and A. Wilhelms, “Xanthones—novel aromatic oxygen-containing compounds in crude oils,” Organic Geochemistry, vol. 33, no. 5, pp. 595–609, 2002.
[15]  T. Jankovi?, D. Krsti?, K. ?avikin-Fodulovi?, N. Menkovi?, and D. Grubi?i?, “Xanthones and secoiridoids from hairy root cultures of Centaurium erythraea and C. pulchellum,” Planta Medica, vol. 68, no. 10, pp. 944–946, 2002.
[16]  M.-J. Don, Y.-J. Huang, R.-L. Huang, and Y.-L. Lin, “New phenolic principles from Hypericum sampsonii,” Chemical and Pharmaceutical Bulletin, vol. 52, no. 7, pp. 866–869, 2004.
[17]  S. Dall'Acqua, G. Innocenti, G. Viola, A. Piovan, R. Caniato, and E. M. Cappelletti, “Cytotoxic compounds from Polygala vulgaris,” Chemical and Pharmaceutical Bulletin, vol. 50, no. 11, pp. 1499–1501, 2002.
[18]  Y. Chen, G. K. Wang, C. Wu, and M. J. Qin, “Chemical constituents of Gentiana rhodantha,” Zhongguo Zhong Yao Za Zhi, vol. 38, no. 3, pp. 362–365, 2013.
[19]  Q.-C. Xue, C.-J. Li, L. Zuo, J.-Z. Yang, and D.-M. Zhang, “Three new xanthones from the roots of Polygala japonica houtt,” Journal of Asian Natural Products Research, vol. 11, no. 5, pp. 465–469, 2009.
[20]  P. Valent?o, P. B. Andrade, E. Silva et al., “Methoxylated xanthones in the quality control of small centaury (Centaurium erythraea) flowering tops,” Journal of Agricultural and Food Chemistry, vol. 50, no. 3, pp. 460–463, 2002.
[21]  D. Krstic, T. Jankovic, K. Savikin-Fodulovic, N. Menkovic, and A. Grubisic, “Secoiridoids and xanthones in the shoots and roots of Centaurium pulchellumcultured in-vitro,” In Vitro Cellular and Developmental Biology, vol. 39, pp. 203–207, 2003.
[22]  V. Peres and T. J. Nagem, “Naturally occurring pentaoxygenated, hexaoxygenated and dimeric xanthones: a literature survey,” Quimica Nova, vol. 20, no. 4, pp. 388–397, 1997.
[23]  H. M. G. Al-Hazimi and G. A. Miana, “Naturally occuring xanthones in higher plants and ferns,” Journal of the Chemical Society of Pakistan, vol. 12, no. 2, pp. 174–188, 1990.
[24]  S. Iseda, “Isolation of 1,3,6,7-tetrahydroxyxanthone and the skeletal structure of Mangiferin,” Bulletin of the Chemical Society of Japan, vol. 30, pp. 625–629, 1957.
[25]  L. J. Haynes and D. R. Taylor, “C-glycosyl compounds. Part V. Mangiferin; the nuclear magnetic resonance spectra of xanthones,” Journal of the Chemical Society C, pp. 1685–1687, 1966.
[26]  V. K. Bhatia, J. D. Ramanathan, and T. R. Seshadri, “Constitution of mangiferin,” Tetrahedron, vol. 23, no. 3, pp. 1363–1368, 1967.
[27]  M. Aritomi and T. Kawasaki, “A New xanthone C-glucoside, position isomer of Mangiferin, from Anemarrhena asphodeloides Bunge,” Chemical and Pharmaceutical Bullelin, vol. 18, pp. 2327–2333, 1970.
[28]  M. Aritomi and T. Kawasaki, “A Mangiferin monomethyl ether from Mangifera indica L.,” Chemical and Pharmaceutical Bullelin, vol. 18, pp. 2224–2234, 1970.
[29]  S. Ghosal and R. K. Chaudhuri, “New tetraoxygenated xanthones of Canscora decussata,” Phytochemistry, vol. 12, no. 8, pp. 2035–2038, 1973.
[30]  M. Arisawa and N. Morita, “Studies on constituents of genus Iris. VII. The constituents of Iris unguicularis POIR. (I),” Chemical and Pharmaceutical Bulletin, vol. 24, no. 4, pp. 815–817, 1976.
[31]  V. Plouvier, J. Massicot, and P. Rivaille, “On gentiacauleine, a new tetra-substituted xanthone, aglycone of gentiacauloside of Gentiana acaulis L,” Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences D, vol. 264, no. 9, pp. 1219–1222, 1967.
[32]  F. Imperato, “A xanthone-O-glycoside from Asplenium adiantum-nigrum,” Phytochemistry, vol. 19, no. 9, pp. 2030–2031, 1980.
[33]  A. M. Verney and A. M. Debelmas, “Xanthones of Gentiana lutea, G. purpurea, G. punctata, G. pannonica,” Annales Pharmaceutiques Francaises, vol. 31, pp. 415–420, 1973.
[34]  S. Ghosal, R. B. P. S. Chauhan, K. Biswas, and R. K. Chaudhuri, “New 1,3,5-trioxygenated xanthones in Canscora decussata,” Phytochemistry, vol. 15, no. 6, pp. 1041–1043, 1976.
[35]  G. Bringmann, G. Lang, S. Steffens, E. Günther, and K. Schaumann, “Evariquinone, isoemericellin, and stromemycin from a sponge derived strain of the fungus Emericella variecolor,” Phytochemistry, vol. 63, no. 4, pp. 437–443, 2003.
[36]  L. H. D. Nguyen and L. J. Harrison, “Xanthones and triterpenoids from the bark of Garcinia vilersiana,” Phytochemistry, vol. 53, no. 1, pp. 111–114, 2000.
[37]  V. Rukachaisirikul, M. Kamkaew, D. Sukavisit, S. Phongpaichit, P. Sawangchote, and W. C. Taylor, “Antibacterial Xanthones from the Leaves of Garcinia nigrolineata,” Journal of Natural Products, vol. 66, no. 12, pp. 1531–1535, 2003.
[38]  H.-F. Dai, Y.-B. Zeng, Q. Xiao, Z. Han, Y.-X. Zhao, and W.-L. Mei, “Caloxanthones O and P: two new prenylated xanthones from Calophyllum inophyllum,” Molecules, vol. 15, no. 2, pp. 606–612, 2010.
[39]  W. G. Shan, T. S. Lin, H. N. Yu, Y. Chen, and Z. J. Zhan, “Polyprenylated Xanthones and Benzophenones from the Bark of Garcinia oblongifolia,” Helvetica Chimica Acta, vol. 95, no. 8, pp. 1442–1448, 2012.
[40]  J. F. Castel?o Jr., O. R. Gottlieb, R. A. De Lima, A. A. L. Mesquita, H. E. Gottliebb, and E. Wenkert, “Xanthonolignoids from Kielmeyera and Caraipa species-13C NMR spectroscopy of xanthones,” Phytochemistry, vol. 16, no. 6, pp. 735–740, 1977.
[41]  H. Nielsen and P. Arends, “Structure of the xanthonolignoid kielcorin,” Phytochemistry, vol. 17, no. 11, pp. 2040–2041, 1978.
[42]  F. D. Monache, M. M. Mac-Quhae, G. D. Monache, G. B. M. Bettolo, and R. A. De Lima, “Xanthones, xanthonolignoids and other constituents of the roots of Vismia guaramirangae,” Phytochemistry, vol. 22, no. 1, pp. 227–232, 1983.
[43]  L. Pinheiro, C. V. Nakamura, B. P. Dias Filho, A. G. Ferreira, M. C. M. Young, and D. A. Garcia Cortez, “Antibacterial Xanthones from Kielmeyera variabilis Mart. (Clusiaceae),” Memorias do Instituto Oswaldo Cruz, vol. 98, no. 4, pp. 549–552, 2003.
[44]  M. L. Cardona, M. I. Fernández, J. R. Pedro, E. Seoane, and R. Vidal, “Additional new xanthones and xanthonolignoids from Hypericum canariensis,” Journal of Natural Products, vol. 49, no. 1, pp. 95–100, 1986.
[45]  G. G. Nikolaeva, V. I. Glyzin, M. S. Mladentseva, V. I. Sheichenko, and A. V. Patudin, “Xanthones of Gentiana lutea,” Chemistry of Natural Compounds, vol. 19, no. 1, pp. 106–107, 1983.
[46]  K. Ishiguro, S. Nagata, H. Oku, and Y. Masae, “Bisxanthones from Hypericum japonicum: inhibitors of PAF-induced hypotension,” Planta Medica, vol. 68, no. 3, pp. 258–261, 2002.
[47]  A. E. Nkengfack, P. Mkounga, M. Meyer, Z. T. Fomum, and B. Bodo, “Globulixanthones C, D and E: three prenylated xanthones with antimicrobial properties from the root bark of Symphonia globulifera,” Phytochemistry, vol. 61, no. 2, pp. 181–187, 2002.
[48]  M. M. Wagenaar and J. Clardy, “Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint,” Journal of Natural Products, vol. 64, no. 8, pp. 1006–1009, 2001.
[49]  K. Kumagai, N. Hosotani, K. Kikuchi, T. Kimura, and I. Saji, “Xanthofulvin, a novel semaphorin inhibitor produced by a strain of Penicillium,” The Journal of Antibiotics, vol. 56, no. 7, pp. 610–616, 2003.
[50]  Y. Terui, C. Yiwen, L. Jun-Ying et al., “Xantholipin, a novel inhibitor of HSP47 gene expression produced by Streptomyces sp,” Tetrahedron Letters, vol. 44, no. 29, pp. 5427–5430, 2003.
[51]  C. Yang, M. A. Li, W. E. I. Zhen-ping, H. A. N. Feng, and G. A. O. Jing, “Advances in isolation and synthesis of xanthone derivatives,” Chinese Herbal Medicines, vol. 4, no. 2, pp. 87–102, 2012.
[52]  J. B. Harbirbe, Phytochemical Methods, Chapman and Hall, London, UK, 1973.
[53]  O. Purev, K. Oyun, G. Odontuya et al., “Isolation and structure elucidation of two new xanthones from Gentiana azurium Bunge (Fam. Gentianaceae),” Zeitschrift fur Naturforschung B, vol. 57, no. 3, pp. 331–334, 2002.
[54]  A. Khan, M. Rahman, and S. Islam, “Isolation and bioactivity of a xanthone glycoside from Peperomia pellucida,” Life Sciences and Medicine Research, pp. 1–15, 2010.
[55]  V. K. Dua, V. P. Ojha, R. Roy et al., “Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata,” Journal of Ethnopharmacology, vol. 95, no. 2-3, pp. 247–251, 2004.
[56]  H. M. Chawla, S. S. Chibber, and U. Khera, “Separation and identification of some hydroxyxanthones by thin-layer chromatography,” Journal of Chromatography A, vol. 111, no. 1, pp. 246–247, 1975.
[57]  S. Suryawanshi, N. Mehrotra, R. K. Asthana, and R. C. Gupta, “Liquid chromatography/tandem mass spectrometric study and analysis of xanthone and secoiridoid glycoside composition of Swertia chirata, a potent antidiabetic,” Rapid Communications in Mass Spectrometry, vol. 20, no. 24, pp. 3761–3768, 2006.
[58]  Y. Song, F. Hu, P. Lin, Y. Lu, and Z. Shi, “Determination of xanthones in Swertia mussotii and Swertia franchetiana by high performance liquid chromatography,” Chinese Journal of Chromatography, vol. 22, no. 1, pp. 51–53, 2004.
[59]  J.-S. Zhang, X.-M. Wang, X.-H. Dong, H.-Y. Yang, and G.-P. Li, “Studies on chemical constituents of Swertia mussotii,” Zhong Yao Cai, vol. 32, no. 4, pp. 511–514, 2009.
[60]  J. S. Negi and P. Singh, “HPLC fingerprinting of highly demanding medicinal plant Swertia: an overview,” International Journal of Medicinal and Aromatic Plants, vol. 1, no. 3, pp. 333–337, 2011.
[61]  J. S. Negi, P. Singh, G. J. Pant, and M. S. M. Rawat, “RP-HPLC analysis and antidiabetic activity of Swertia paniculata,” Natural Product Communications, vol. 5, no. 6, pp. 907–910, 2010.
[62]  R. R. Sun, F. P. Miao, J. Zhang, G. Wang, X. L. Yin, and N. Y. Ji, “Three new xanthone derivatives from an algicolous isolate of Aspergillus wentii,” Magnetic Resonance in Chemistry, vol. 51, no. 1, pp. 65–68, 2013.
[63]  H. H. F. Koolen, L. S. Menezes, M. P. Souza, et al., “Talaroxanthone, a novel xanthone dimer from the endophytic fungus Talaromyces sp. associated with Duguetia stelechanthan (Diels) R. E. Fries,” Journal of the Brazilian Chemical Society, vol. 24, no. 5, pp. 880–883, 2013.
[64]  A. K. Chakravarty, T. Sarkar, K. Masuda et al., “Structure and synthesis of glycoborine, a new carbazole alkaloid from the roots of Glycosmis arborea: a note on the structure of glycozolicine,” Indian Journal of Chemistry B, vol. 40, no. 6, pp. 484–489, 2001.
[65]  S. Mandal and A. Chatterjee, Seminar on Research in Ayurveda and Siddha, CCRAS, New Delhi, India, 1994.
[66]  A. K. Chakravarty, S. Mukhopadhyay, S. K. Moitra, and B. Das, “(-)-Syringaresinol, a hepatoprotective agent and other constituents from Swertia chirata,” Indian Journal of Chemistry, vol. 33, pp. 405–408, 1994.
[67]  K. S. Khetwal and R. S. Bisht, “A xanthone glycoside from Swertia speciosa,” Phytochemistry, vol. 27, no. 6, pp. 1910–1911, 1988.
[68]  D. L. Verma and K. S. Khetwal, “Phenolics in the roots of Swertia paniculata Wall,” Science and Culture, vol. 51, pp. 305–306, 1985.
[69]  M. Kikuchi and M. Kikuchi, “Studies on the constituents of Swertia japonica MAKINO I. On the structures of new secoiridoid diglycosides,” Chemical and Pharmaceutical Bulletin, vol. 52, no. 10, pp. 1210–1214, 2004.
[70]  H. Yang, C. Ding, Y. Duan, and J. Liu, “Variation of active constituents of an important Tibet folk medicine Swertia mussotii Franch. (Gentianaceae) between artificially cultivated and naturally distributed,” Journal of Ethnopharmacology, vol. 98, no. 1-2, pp. 31–35, 2005.
[71]  S.-S. Wang, W.-J. Zhao, X.-W. Han, and X.-M. Liang, “Two new iridoid glycosides from the Tibetan folk medicine Swertia franchetiana,” Chemical and Pharmaceutical Bulletin, vol. 53, no. 6, pp. 674–676, 2005.
[72]  H. Hajimehdipour, Y. Amanzadeh, S. E. Sadat Ebrahimi, and V. Mozaffarian, “Three tetraoxygenated xanthones from Swertia longifolia,” Pharmaceutical Biology, vol. 41, no. 7, pp. 497–499, 2003.
[73]  Y. X. Deng, T. Guo, Z. Y. Shao, H. Xie, and S. L. Pan, “Three new xanthones from the resin of Garcinia hanburyi,” Planta Medica, vol. 79, no. 9, pp. 792–796, 2013.
[74]  H. Y. Yang, Y. H. Gao, D. Y. Niu, et al., “Xanthone derivatives from the fermentation products of an endophytic fungus Phomopsis sp,” Fitoterapia, vol. S0367-326X, no. 13, pp. 00239–00246, 2013.
[75]  A. Aberham, S. Schwaiger, H. Stuppner, and M. Ganzera, “Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS,” Journal of Pharmaceutical and Biomedical Analysis, vol. 45, no. 3, pp. 437–442, 2007.
[76]  R. Dai, J. Gao, and K. Bi, “High-performance liquid chromatographic method for the determination and pharmacokinetic study of mangiferin in plasma of rats having taken the traditional Chinese medicinal preparation Zi-Shen Pill,” Journal of Chromatographic Science, vol. 42, no. 2, pp. 88–90, 2004.
[77]  T. T. Zhou, Z. Y. Zhu, C. Wang et al., “On-line purity monitoring in high-speed counter-current chromatography: application of HSCCC-HPLC-DAD for the preparation of 5-HMF, neomangiferin and mangiferin from Anemarrhena asphodeloides Bunge,” Journal of Pharmaceutical and Biomedical Analysis, vol. 44, no. 1, pp. 96–100, 2007.
[78]  Y. Shan and W. Zhang, “Preparative separation of major xanthones from mangosteen pericarp using highperformance centrifugal partition chromatography,” Journal of Separation Science, vol. 33, no. 9, pp. 1274–1278, 2010.
[79]  K. S. Van and B. Nessler, “Ueber einige oxyxanthone,” Chemische Berichte, vol. 24, pp. 3980–3984, 1891.
[80]  W. E. Whitman and L. A. Wiles, “The polarographic reduction of xanthone and methoxyxanthones,” Journal of Chemical Society, pp. 3016–3019, 1956.
[81]  D. Barraclough, H. D. Locksley, F. Scheinmann, M. Taveira Magalhaes, and O. R. Gottlieb, “Applications of proton magnetic resonance spectroscopy in the structural investigation of xanthones,” Journal of the Chemical Society B, pp. 603–612, 1970.
[82]  M. Kaldas, K. Hostettmann, and A. Jacot-Guillarmod, “Contribution à la phytochimie du genre Gentiana IX. Etude de composés flavoniques et xanthoniques dans les feuilles de Gentiana campestris L. 1ère communication,” Helvetica Chimica Acta, vol. 57, pp. 2557–2561, 1974.
[83]  K. Hostettmann, R. Tabacchi, and A. Jacot-Guillarmod, “Contribution à la phytochimie du genre Gentiana, VI. Etude des xanthones dans les feuilles de Gentiana bavarica L.,” Helvetica Chimica Acta, vol. 57, pp. 294–301, 1974.
[84]  B. Gentili and R. M. Horowitz, “Flavonoids of Citrus. IX. Some new c-glycosylflavones and a nuclear magnetic resonance method for differentiating 6- and 8-c-glycosyl isomers,” Journal of Organic Chemistry, vol. 33, no. 4, pp. 1571–1577, 1968.
[85]  D. K. Holdsworth, “A method to differentiate isomeric C-glucosyl chromones, isoflavones and xanthones,” Phytochemistry, vol. 12, no. 8, pp. 2011–2015, 1973.
[86]  A. Prox, “Massenspektrometrische untersuchung einiger natürlicher C-glukosyl-verbindungen,” Tetrahedron, vol. 24, no. 9, pp. 3697–3715, 1968.
[87]  P. Arends, P. Helboe, and Moller, “Mass spectrometry of xanthones-I: the electron-impact-induced fragmentation of xanthone, monohydroxy and monomethoxyxanthones,” Journal of Organic Mass Spectrometry, vol. 7, pp. 667–681, 1998.
[88]  B. Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, UK, 28th edition, 1982.
[89]  S. K. Bhattacharya, S. Ghosal, R. K. Chaudhuri, and A. K. Sanyal, “Canscora decussata (Gentianaceae) xanthones. 3. Pharmacological studies,” Journal of Pharmaceutical Sciences, vol. 61, no. 11, pp. 1838–1840, 1972.
[90]  C. N. Lin, M. I. Chung, M. Arisawa, M. Shimizu, and N. Morita, “The constituents of Tripterospermum taiwanense Satake var. alpinum Satake and pharmacological activity of some xanthone derivatives,” Shoyakugaku Zasshi, vol. 38, pp. 80–82, 1984.
[91]  A. M. Saxena, M. B. Bajpai, P. S. R. Murthy, and S. K. Mukherjee, “Mechanism of blood sugar lowering by a swerchirin-containing hexane fraction (SWI) of Swertia chirayita,” Indian Journal of Experimental Biology, vol. 31, no. 2, pp. 178–181, 1993.
[92]  P. Basnet, S. Kadota, T. Namba, and M. Shimizu, “The hypoglycaemic activity of Swertia japonica extract in streptozotocin induced hyperglycaemic rats,” Phytotherapy Research, vol. 8, no. 1, pp. 55–57, 1994.
[93]  P. Basnet, S. Kadota, M. Shimizu, Y. Takata, M. Kobayashi, and T. Namba, “Bellidifolin stimulates glucose uptake in rat 1 fibroblasts and ameliorates hyperglycemia in streptozotocin (STZ)-induced diabetic rats,” Planta Medica, vol. 61, no. 5, pp. 402–405, 1995.
[94]  T. Okada, “Insect repellant,” Japan. Patent 7875, 327, (Chemical Abstract no. 89: 192516, (1978)), 1977.
[95]  I. Morimoto, F. Watanabe, and T. Osawa, “Mutagenicity screening of crude drugs with Bacillus subtilis rec-assay and Salmonella/microsome reversion assay,” Mutation Research, vol. 97, no. 2, pp. 81–102, 1982.
[96]  A. Prakash, P. C. Basumatary, S. Ghosal, and S. S. Handa, “Chemical constituents of Swertia paniculata,” Planta Medica, vol. 45, no. 1, pp. 61–62, 1982.
[97]  S. Ghosal, K. Biswas, and D. K. Jaiswal, “Xanthone and flavonol constituents of Swertia hookeri,” Phytochemistry, vol. 19, no. 1, pp. 123–126, 1980.
[98]  T. Pengsuparp, L. Cai, H. Constant et al., “Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase,” Journal of Natural Products, vol. 58, no. 7, pp. 1024–1031, 1995.
[99]  P. C. Das, S. Sarkar, A. Das, et al., Proceeding of the 5th ISHS International Symposium on Medicinal, Aromatic and Spice Plants, Darjeeling, India, 1985.
[100]  S. Ghosal and R. K. Chaudhuri, “Chemical constituents of gentianaceae XVI: antitubercular activity of xanthones of Canscora decussata Schult,” Journal of Pharmaceutical Sciences, vol. 64, no. 5, pp. 888–889, 1975.
[101]  R. N. Mullick, P. C. Das, and S. M. Chatterji, “Antifeeding properties of Swerita chirata against jute semilooper (Anomis sabulifera Guen),” Current Science, vol. 54, pp. 1110–1112, 1985.
[102]  S. Ghosal, P. V. Sharma, and R. K. Chaudhuri, “Chemical constituents of gentianaceae X: xanthone O glucosides of Swertia purpurascens Wall,” Journal of Pharmaceutical Sciences, vol. 63, no. 8, pp. 1286–1290, 1974.
[103]  R. A. Finnegan, K. E. Merkel, and J. K. Patel, “Constituents of Mammea americana L. XII. Biological data for xanthones and benzophenones,” Journal of Pharmaceutical Sciences, vol. 62, no. 3, pp. 483–485, 1973.
[104]  M. B. Bajpai, R. K. Asthana, N. K. Sharma, S. K. Chatterjee, and S. K. Mukherjee, “Hypoglycemic effect of swerchirin from the hexane fraction of Swertia chirayita,” Planta Medica, vol. 57, no. 2, pp. 102–104, 1991.
[105]  J. S. Negi, P. Singh, G. J. Nee Pant, and M. S. M. Rawat, “Study on the variations of mineral elements in Swertia speciosa (G. Don),” Biological Trace Element Research, vol. 138, no. 1–3, pp. 300–306, 2010.
[106]  J. S. Negi, “Evaluation of trace element contents in Swertia paniculata Wall,” Natural Product Research, vol. 26, no. 1, pp. 72–76, 2012.
[107]  J. S. Negi, P. Singh, M. S. M. Rawat, and G. J. Pant, “Study on the trace elements in Swertia chirayita (Roxb.) H. Karsten,” Biological Trace Element Research, vol. 133, no. 3, pp. 350–356, 2010.
[108]  J. S. Negi, P. Singh, and B. Rawat, “Chemical constituents and biological importance of Swertia: a review,” Current Research in Chemistry, vol. 3, no. 1, pp. 1–15, 2011.
[109]  C. T. Luo, S. S. Mao, F. L. Liu, et al., “Antioxidant xanthones from Swertia mussotii, a high altitude plant,” Fitoterapia, vol. S0367-326X, no. 13, pp. 00229–00233, 2013.
[110]  G. C. Jagetia and V. A. Venkatesha, “Mangiferin, a glucosylxanthone, protects against the radiation-induced micronuclei formation in the cultured human peripheral blood lymphocytes,” International Congress Series, vol. 1276, pp. 195–196, 2005.
[111]  J. Leiro, J. A. Arranz, M. Yá?ez, F. M. Ubeira, M. L. Sanmartín, and F. Orallo, “Expression profiles of genes involved in the mouse nuclear factor-kappa B signal transduction pathway are modulated by mangiferin,” International Immunopharmacology, vol. 4, no. 6, pp. 763–778, 2004.
[112]  H. Li, T. Miyahara, Y. Tezuka, et al., “The effect of Kampo formulae on bone resorption in vitro and in vivo. I. Active constituents of Tsu-kan-gan,” Biological and Pharmaceutical Bulletin, vol. 21, no. 12, pp. 1322–1326, 1998.
[113]  S. Perrucci, G. Fichi, C. Buggiani, G. Rossi, and G. Flamini, “Efficacy of mangiferin against Cryptosporidium parvum in a neonatal mouse model,” Parasitology Research, vol. 99, no. 2, pp. 184–188, 2006.
[114]  H. W. Ryu, M. J. Curtis-Long, S. Jung et al., “Xanthones with neuraminidase inhibitory activity from the seedcases of Garcinia mangostana,” Bioorganic and Medicinal Chemistry, vol. 18, no. 17, pp. 6258–6264, 2010.
[115]  M. V. Ignatushchenko, R. W. Winter, and M. Riscoe, “Xanthones as antimalarial agents: sage specificity,” The American Journal of Tropical Medicine and Hygiene, vol. 62, no. 1, pp. 77–81, 2000.
[116]  G.-H. Quan, S.-R. Oh, J.-H. Kim, H.-K. Lee, A. D. Kinghorn, and Y.-W. Chin, “Xanthone constituents of the fruits of Garcinia mangostana with anticomplement activity,” Phytotherapy Research, vol. 24, no. 10, pp. 1575–1577, 2010.
[117]  F. M. Tala, K. Krohn, H. Hussain, et al., “Laurentixanthone C: a new antifungal and algicidal xanthone from stem bark of Vismia laurentii,” Zeitschrift fur Naturforschung B, vol. 62, no. 4, pp. 565–568, 2007.
[118]  A. Groweiss, J. H. Cardellina II, and M. R. Boyd, “HIV-inhibitory prenylated xanthones and flavones from Maclura tinctoria,” Journal of Natural Products, vol. 63, no. 11, pp. 1537–1539, 2000.
[119]  M. M. M. Pinto, M. E. Sousa, and M. S. J. Nascimento, “Xanthone derivatives: new insights in biological activities,” Current Medicinal Chemistry, vol. 12, no. 21, pp. 2517–2538, 2005.
[120]  B. Dineshkumar, A. Mitra, and M. Manjunatha, “Studies on the anti-diabetic and hypolipidemic potentials of mangiferin (xanthone glucoside) in streptozotocin-induced type 1 and type 2 diabetic model rats,” International Journal of Advances in Pharmaceutical Sciences, vol. 1, no. 1, pp. 75–85, 2010.
[121]  T. Shan, Q. Ma, K. Guo et al., “Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs,” Current Molecular Medicine, vol. 11, no. 8, pp. 666–677, 2011.
[122]  W. Seesom, A. Jaratrungtawee, S. Suksumran, et al., “Antileptospiral activity of xanthones from Garcinia mangostana and synergy of gamma-mangostin with penicillin G,” BMC Complementary and Alternative Medicine, vol. 13, no. 1, p. 182, 2013.
[123]  S. M. Al-Massarani, A. A. El Gamal, N. M. Al-Musayeib, et al., “Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and a-mangostin, its major xanthone derivative,” Molecules, vol. 18, no. 9, pp. 10599–10608, 2013.
[124]  Y. P. Wu, W. Zhao, Z. Y. Xia, et al., “Three novel xanthones from Garcinia paucinervis and their anti-TMV activity,” Molecules, vol. 18, no. 8, pp. 9663–9669, 2013.
[125]  T. W. Cao, C. A. Geng, Y. B. Ma, et al., “Xanthones with anti-hepatitis B virus activity from Swertia mussotii,” Planta Medica, vol. 79, no. 8, pp. 697–700, 2013.
[126]  J. E. Atkinson, P. Gupta, and J. R. Lewis, “Benzophenone participation in xanthone biosynthesis (Gentianaceae),” Chemical Communications, no. 22, pp. 1386–1387, 1968.
[127]  P. Gupta and J. R. Lewis, “Biogenesis of xanthones in Gentiana lutea,” Journal of the Chemical Society C, pp. 629–631, 1971.
[128]  S. Peters, W. Schmidt, and L. Beerhues, “Regioselective oxidative phenol couplings of 2,3',4,6-tetrahydroxybenzophenone in cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L,” Planta, vol. 204, no. 1, pp. 64–69, 1998.
[129]  W. Schmidt, S. Peters, and L. Beerhues, “Xanthone 6-hydroxylase from cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L,” Phytochemistry, vol. 53, no. 4, pp. 427–431, 2000.
[130]  M. E. Sousa and M. M. M. Pinto, “Synthesis of xanthones: an overview,” Current Medicinal Chemistry, vol. 12, no. 21, pp. 2447–2479, 2005.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133