全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Solutions of a Quadratic Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems

DOI: 10.1155/2014/703178

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given pairs of complex numbers and vectors (closed under conjugation), we consider the inverse quadratic eigenvalue problem of constructing real matrices , , , and , where , and are symmetric, and is skew-symmetric, so that the quadratic pencil has the given pairs as eigenpairs. First, we construct a general solution to this problem with . Then, with the special properties and , we construct a particular solution. Numerical results illustrate these solutions. 1. Introduction Vibrating structures such as buildings, bridges, highways, and airplanes are distributed parameter systems [1]. Very often a distributed parameter system is first discretized to a matrix second-order using techniques of finite element or finite difference, and then an approximate solution is obtained for the discretized model. Associated with the matrix second-order model is the eigenvalue problem of the quadratic pencil, where , , , and are, respectively, mass, damping, gyroscopic and stiffness matrices. The system represented by (1) is called damped gyroscopic system. In general, the gyroscopic matrix is always skew-symmetric, the damping matrix and the stiffness matrix are symmetric, the mass matrix is symmetric positive definite, and they are all real matrices. If , the system is called damped nongyroscopic system, and if , the system is called undamped gyroscopic system. The damped gyroscopic system has been widely studied in two aspects: the quadratic eigenvalue problem (QEP) and the quadratic inverse eigenvalue problem (QIEP). The QEP involves finding scalars and nonzero vectors , called the eigenvalues and eigenvectors of the system, to satisfy the algebraic equation , when the coefficient matrices are given. Many authors have been devoted to this kind of problems and a series of good results have been made (see, e.g., [2–8]). The QIEP determines or estimates the parameters of the system from observed or expected eigeninformation of . Our main interest in this paper is the corresponding inverse problem: given partially measured information about eigenvalues and eigenvectors, we reconstruct matrices , , , and , satisfied with several conditions, so that has the given eigenpairs. The problem we considered is stated as follows. Problem 1. Given an eigeninformation pair , where with find real matrices , , , and , with being symmetric definite, and being symmetric, and being skew-symmetric, so that In [9], Gohberg et al. developed a powerful GLR theory to solve the QIEP of the undamped gyroscopic system. In [10], Chu and Xu developed an elegant procedure to obtain a real-valued

References

[1]  M. J. Balas, “Trends in large space structure control theory: fondest hopes, wildest dreams,” IEEE Transactions on Automatic Control, vol. 27, no. 3, pp. 522–535, 1982.
[2]  Z. Bai and Y. Su, “Soar: a second-order arnoldi method for the solution of the quadratic eigenvalue problem,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 3, pp. 640–659, 2005.
[3]  C. Guo, “Numerical solution of a quadratic eigenvalue problem,” Linear Algebra and Its Applications, vol. 385, no. 1–3, pp. 391–406, 2004.
[4]  Z. Jia and Y. Sun, “A refined Jacobi-Davidson method for the quadratic eigenvalue problem,” in Proceedings of the 10th WSEAS International Confenrence on APPLIED MATHEMATICS, pp. 1150–3155, Dallas, Tex, USA, November 2006.
[5]  K. Meerbergen, “The quadratic arnoldi method for the solution of the quadratic eigenvalue problem,” SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 4, pp. 1463–1482, 2008.
[6]  J. Qian and W. Lin, “A numerical method for quadratic eigenvalue problems of gyroscopic systems,” Journal of Sound and Vibration, vol. 306, no. 1-2, pp. 284–296, 2007.
[7]  F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem,” SIAM Review, vol. 43, no. 2, pp. 235–286, 2001.
[8]  L. Zhou, L. Bao, Y. Lin, Y. Wei, and Q. Wu, “Restarted generalized second-order krylov subspace methods for solving quadratic eigenvalue problems,” World Academy of Science, Engineering and Technology, vol. 67, pp. 429–436, 2010.
[9]  I. Gohberg, P. Lancaster, and L. Rodman, “On selfadjoint matrix polynomials,” Integral Equations and Operator Theory, vol. 2, no. 3, pp. 434–439, 1979.
[10]  M. Chu and S. Xu, “Spectral decomposition of real symmetric quadratic λ-matrices and its applications,” Mathematics of Computation, vol. 78, no. 265, pp. 293–313, 2009.
[11]  Z. Jia and M. Wei, “A real-valued spectral decomposition of the undamped gyroscopic system with applications,” SIAM Journal on Matrix Analysis and Applications, vol. 32, no. 2, pp. 584–604, 2011.
[12]  Y. Kuo, W. Lin, and S. Xu, “Solutions of the partially described inverse quadratic eigenvalue problem,” SIAM Journal on Matrix Analysis and Applications, vol. 29, no. 1, pp. 33–53, 2006.
[13]  Y. Cai, Y. Kuo, W. Lin, and S. Xu, “Solutions to a quadratic inverse eigenvalue problem,” Linear Algebra and Its Applications, vol. 430, no. 5-6, pp. 1590–1606, 2009.
[14]  Y. Yuan, “An inverse eigenvalue problem for damped gyroscopic second-order systems,” Mathematical Problems in Engineering, vol. 2009, Article ID 725616, 10 pages, 2009.
[15]  H. W. Braden, “The equations ,” Journal on Matrix Analysis and Applications, vol. 20, no. 2, pp. 295–302, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133