全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Constraint on Heavy Element Production in Inhomogeneous Big-Bang Nucleosynthesis from the Light Element Observations

DOI: 10.1155/2013/587294

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate the observational constraints on the inhomogeneous big-bang nucleosynthesis that Matsuura et al. (2005) suggested that states the possibility of the heavy element production beyond 7Li in the early universe. From the observational constraints on light elements of 4He and D, possible regions are found on the plane of the volume fraction of the high-density region against the ratio between high- and low-density regions. In these allowed regions, we have confirmed that the heavy elements beyond Ni can be produced appreciably, where p- and/or r-process elements are produced well simultaneously. 1. Introduction Big-bang nucleosynthesis (BBN) has been investigated to explain the origin of the light elements, such as , D, , and , during the first few minutes [1–4]. Standard model of BBN (SBBN) can succeed in explaining the observation of those elements, [5–9], D [10–13], and [14, 15], except for . The study of SBBN has been done under the assumption of the homogeneous universe, where the model has only one parameter, the baryon-to-photon ratio . If the present value of is determined, SBBN can be calculated from the thermodynamical history with the use of the nuclear reaction network. We can obtain the reasonable value of by comparing the calculated abundances with observations. In the meanwhile, the value of is obtained as [1] from the observations of and D. These values agree well with the observation of the cosmic microwave background: [16]. On the other hand, BBN with the inhomogeneous baryon distribution also has been investigated. The model is called as inhomogeneous BBN (IBBN). IBBN relies on the inhomogeneity of baryon concentrations that could be induced by baryogenesis (e.g., [17]) or phase transitions such as QCD or electro-weak phase transition [18–21] during the expansion of the universe. Although a large-scale inhomogeneity is inhibited by many observations [16, 22–24], a small scale one has been advocated within the present accuracy of the observations. Therefore, it remains a possibility for IBBN to occur in some degree during the early era. In IBBN, the heavy element nucleosynthesis beyond the mass number has been proposed [17, 18, 25–35]. In addition, peculiar observations of abundances for heavy elements and/or could be understood in the way of IBBN. For example, the quasar metallicity of C, N, and Si could have been explained from IBBN [36]. Furthermore, from recent observations of globular clusters, a possibility of inhomogeneous helium distribution is pointed out [37], where some separate groups of different main sequences

References

[1]  J. Beringer, J. F. Arguin, R. M. Barnett, et al., “Review of particle physics,” Physical Review D, vol. 86, no. 1, Article ID 010001, 1528 pages, 2012.
[2]  G. Steigman, “Primordial nucleosynthesis in the precision cosmology era,” Annual Review of Nuclear and Particle Science, vol. 57, pp. 463–491, 2007.
[3]  F. Iocco, G. Mangano, G. Miele, O. Pisanti, and P. D. Serpico, “Primordial nucleosynthesis: from precision cosmology to fundamental physics,” Physics Reports, vol. 472, no. 1–6, pp. 1–76, 2009.
[4]  A. Coc, S. Goriely, Y. Xu, M. Saimpert, and E. Vangioni, “Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network,” The Astrophysical Journal, vol. 744, no. 2, article 158, 2012.
[5]  V. Luridiana, A. Peimbert, M. Peimbert, and M. Cervi?o, “The effect of collisional enhancement of Balmer lines on the determination of the primordial helium abundance,” The Astrophysical Journal Letters, vol. 592, no. 2, pp. 846–865, 2003.
[6]  K. A. Olive and E. D. Skillman, “A realistic determination of the error on the primordial helium abundance: steps toward nonparametric nebular helium abundances,” The Astrophysical Journal, vol. 617, no. 1, pp. 29–40, 2004.
[7]  Y. I. Izotov, T. X. Thuan, and G. Stasińska, “The primordial abundance of 4He: a self-consistent empirical analysis of systematic effects in a large sample of low-metallicity H II regions,” The Astrophysical Journal, vol. 662, no. 1, article 15, 2007.
[8]  Y. I. Izotov and T. X. Thuan, “The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis,” The Astrophysical Journal Letters, vol. 710, no. 1, pp. L67–L71, 2010.
[9]  E. Aver, K. A. Olive, and E. D. Skillman, “An MCMC determination of the primordial helium abundance,” Journal of Cosmology and Astroparticle Physics, vol. 2012, no. 4, article 4, 2012.
[10]  D. Kirkman, D. Tytler, N. Suzuki, J. M. O’Meara, and D. Lubin, “The cosmological baryon density from the deuterium-to-hydrogen ratio in QSO absorption systems: D/H toward Q1243+3047,” The Astrophysical Journal Supplement Series, vol. 149, no. 1, article 1, 2003.
[11]  J. M. O’Meara, S. Burles, J. X. Prochaska, G. E. Prochter, R. A. Bernstein, and K. M. Burgess, “The deuterium-to-hydrogen abundance ratio toward the QSO SDSS J155810.16-003120.0,” The Astrophysical Journal Letters, vol. 649, no. 2, article L61, 2006.
[12]  M. Pettini, B. J. Zych, M. T. Murphy, A. Lewis, and C. C. Steidel, “Deuterium abundance in the most metal-poor damped Lyman alpha system: converging on Ωb,0h2,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 4, pp. 1499–1510, 2008.
[13]  M. Pettini and R. Cooke, “A new, precise measurement of the primordial abundance of deuterium,” Monthly Notices of the Royal Astronomical Society, vol. 425, no. 4, pp. 2477–2486, 2012.
[14]  T. M. Bania, R. T. Rood, and D. S. Balser, “The cosmological density of baryons from observations of 3He+ in the Milky Way,” Nature, vol. 415, no. 6867, pp. 54–57, 2002.
[15]  E. Vangioni-Flam, K. A. Olive, B. D. Fields, and M. Cassé, “On the baryometric status of 3He,” The Astrophysical Journal, vol. 585, no. 2, article 611, 2003.
[16]  C. L. Bennett, D. Larson, J. L. Weiland et al., “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results,” Astrophysical Journal Supplement Series, http://arxiv.org/abs/1212.5225.
[17]  S. Matsuura, A. D. Dolgov, S. Nagataki, and K. Sato, “Affleck-dine baryogenesis and heavy element production from inhomogeneous big bang nucleosynthesis,” Progress of Theoretical Physics, vol. 112, no. 6, pp. 971–981, 2004.
[18]  C. Alcock, G. M. Fuller, and G. J. Mathews, “The quark-hadron phase transition and primordial nucleosynthesis,” The Astrophysical Journal, vol. 320, pp. 439–447, 1987.
[19]  G. M. Fuller, G. J. Mathews, and C. R. Alcock, “Quark-hadron phase transition in the early Universe: Isothermal baryon-number fluctuations and primordial nucleosynthesis,” Physical Review D, vol. 37, no. 6, pp. 1380–1400, 1988.
[20]  H. Kurki-Suonio and R. A. Matzner, “Effect of small-scale baryon inhomogeneity on cosmic nucleosynthesis,” Physical Review D, vol. 39, no. 4, pp. 1046–1053, 1989.
[21]  H. Kurki-Suonio and R. A. Matzner, “Overproduction of 4He in strongly inhomogeneous ?b=1 models of primordial nucleosynthesis,” Physical Review D, vol. 42, no. 4, pp. 1047–1056, 1990.
[22]  C. L. Bennett, M. Halpern, G. Hinshaw, et al., “First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results,” The Astrophysical Journal Supplement Series, vol. 148, no. 1, article 1, 2003.
[23]  D. N. Spergel, R. Bean, O. Doré, et al., “Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology,” The Astrophysical Journal Supplement Series, vol. 170, no. 2, article 377, 2007.
[24]  J. Dunkley, E. Komatsu, M. R. Nolta, et al., “Five-year Wilkinson microwave anisotropy probe observations: likelihoods and parameters from the WMAP data,” The Astrophysical Journal Supplement Series, vol. 180, no. 2, article 306, 2009.
[25]  J. H. Applegate, C. J. Hogan, and R. J. Scherrer, “Cosmological baryon diffusion and nucleosynthesis,” Physical Review D, vol. 35, no. 4, pp. 1151–1160, 1987.
[26]  R. M. Malaney and W. A. Fowler, “Late-time neutron diffusion and nucleosynthesis in a post-QCD inhomogeneous ?(b) = 1 universe,” The Astrophysical Journal, vol. 333, pp. 14–20, 1988.
[27]  J. H. Applegate, C. J. Hogan, and R. J. Scherrer, “Cosmological quantum chromodynamics, neutron diffusion, and the production of primordial heavy elements,” The Astrophysical Journal, vol. 329, pp. 572–579, 1988.
[28]  N. Terasawa and K. Sato, “Production of Be-9 and heavy elements in the inhomogeneous universe,” The Astrophysical Journal, vol. 362, pp. L47–L49, 1990.
[29]  D. Thomas, D. N. Schramm, K. A. Olive, G. J. Mathews, B. S. Meyer, and B. D. Fields, “Production of lithium, beryllium, and boron from baryon inhomogeneous primordial nucleosynthesis,” The Astrophysical Journal, vol. 430, no. 1, pp. 291–299, 1994.
[30]  N. Terasawa and K. Sato, “Neutron diffusion and nucleosynthesis in the Universe with isothermal fluctuations produced by quark-hadron phase transition,” Physical Review D, vol. 39, no. 10, pp. 2893–2900, 1989.
[31]  K. Jedamzik and J. B. Rehm, “Inhomogeneous big bang nucleosynthesis: upper limit on ?b and production of lithium, beryllium, and boron,” Physical Review D, vol. 64, no. 2, Article ID 023510, 8 pages, 2001.
[32]  T. Rauscher, H. Applegate, J. Cowan, F. Thielmann, and M. Wiescher, “Production of heavy elements in inhomogeneous cosmologies,” The Astrophysical Journal, vol. 429, no. 2, pp. 499–530, 1994.
[33]  K. Jedamzik, G. M. Fuller, G. J. Mathews, and T. Kajino, “Enhanced heavy-element formation in baryon-inhomogeneous big bang models,” The Astrophysical Journal Letters, vol. 422, no. 2, pp. 423–429, 1994.
[34]  R. V. Wagoner, W. A. Fowler, and F. Hoyle, “On the synthesis of elements at very high temperatures,” The Astrophysical Journal, vol. 148, article 3, 1967.
[35]  R. V. Wagoner, “Big bang nucleosynthesis revisited,” The Astrophysical Journal, vol. 179, pp. 343–360, 1973.
[36]  Y. Juarez, R. Maiolino, R. Mujica et al., “The metallicity of the most distant quasars,” Astronomy and Astrophysics, vol. 494, no. 2, pp. L25–L28, 2009.
[37]  T. Moriya and T. Shigeyama, “Multiple main sequence of globular clusters as a result of inhomogeneous big bang nucleosynthesis,” Physical Review D, vol. 81, no. 4, Article ID 043004, 7 pages, 2010.
[38]  L. R. Bedin, G. Piotto, J. Anderson et al., “ω centauri: the population puzzle goes deeper,” The Astrophysical Journal Letters, vol. 605, no. 2, article L125, 2004.
[39]  G. Piotto, L. R. Bedin, J. Anderson et al., “A triple main sequence in the globular cluster NGC 2808,” The Astrophysical Journal Letters, vol. 661, no. 1, article L53, 2007.
[40]  I. Affleck and M. Dine, “A new mechanism for baryogenesis,” Nuclear Physics B, vol. 249, no. 2, pp. 361–380, 1985.
[41]  T. Rauscher, “Comment on ‘heavy element production in inhomogeneous big bang nucleosynthesis’,” Physical Review D, vol. 75, no. 6, Article ID 068301, 2 pages, 2007.
[42]  S. Matsuura, S. I. Fujimoto, S. Nishimura, M. A. Hashimoto, and K. Sato, “Heavy element production in inhomogeneous big bang nucleosynthesis,” Physical Review D, vol. 72, no. 12, Article ID 123505, 6 pages, 2005.
[43]  S. Matsuura, S. I. Fujimoto, M. A. Hashimoto, and K. Sato, “Reply to ‘Comment on heavy element production in inhomogeneous big bang nucleosynthesis’,” Physical Review D, vol. 75, no. 6, Article ID 068302, 5 pages, 2007.
[44]  M. Hashimoto and K. Arai, “The nuclear reaction network,” Physics Reports of Kumamoto University, vol. 7, no. 2, pp. 47–65, 1985.
[45]  P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, and E. Vangioni-Flam, “Compilation and R-matrix analysis of big bang nuclear reaction rates,” Atomic Data and Nuclear Data Tables, vol. 88, no. 1, pp. 203–236, 2004.
[46]  S. Fujimoto, M. Hashimoto, O. Koike, K. Arai, and R. Matsuba, “p-process nucleosynthesis inside supernova-driven supercritical accretion disks,” The Astrophysical Journal, vol. 585, no. 1, article 418, 2003.
[47]  O. Koike, M. Hashimoto, R. Kuromizu, and S. Fujimoto, “Final products of the rp-process on accreting neutron stars,” The Astrophysical Journal, vol. 603, no. 1, article 592, 2004.
[48]  S. Fujimoto, M. Hashimoto, K. Arai, and R. Matsuba, “Nucleosynthesis inside an accretion disk and disk winds related to gamma-ray bursts,” The Astrophysical Journal, vol. 614, no. 2, article 847, 2004.
[49]  S. Nishimura, K. Kotake, M. Hashimoto et al., “r-process nucleosynthesis in magnetohydrodynamic jet explosions of core-collapse supernovae,” The Astrophysical Journal, vol. 642, no. 1, article 410, 2006.
[50]  K. Kawano, “Let's go: early universe 2. Primordial nucleosynthesis. The computer way,” FERMILAB-Pub-92/04-A, 58 pages, 1992.
[51]  M. Hashimoto, “Supernova nucleosynthesis in massive stars,” Progress of Theoretical Physics, vol. 94, no. 5, pp. 663–736, 1995.
[52]  E. Anders and N. Grevesse, “Abundances of the elements: meteoritic and solar,” Geochimica et Cosmochimica Acta, vol. 53, no. 1, pp. 197–214, 1989.
[53]  A. Frebel, N. Christlieb, J. E. Norris, C. Thom, T. C. Beers, and J. Rhee, “Discovery of HE 1523-0901, a strongly r-process-enhanced metal-poor star with detected uranium,” The Astrophysical Journal Letters, vol. 660, no. 2, pp. L117–L120, 2007.
[54]  A. Frebel, J. E. Norris, W. Aoki, et al., “Chemical abundance analysis of the extremely metal-poor star HE 1300+0157,” The Astrophysical Journal, vol. 658, no. 1, article 534, 2007.
[55]  C. Siqueira Mello, M. Spite, B. Barbuy, et al., “First stars: XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-001,” Astronomy and Astrophysics, vol. 550, article A122, 17 pages, 2013.
[56]  C. C. Worley, V. Hill, J. Sobeck, and E. Carretta, “Ba and Eu abundances in M?15 giant stars,” Astronomy and Astrophysics, vol. 553, article A47, 20 pages, 2013.
[57]  A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour, and C. Angulo, “Updated big bang nucleosynthesis compared with Wilkinson microwave anisotropy probe observations and the abundance of light elements,” The Astrophysical Journal Letters, vol. 600, no. 2, pp. 544–552, 2004.
[58]  R. H. Cyburt, B. D. Fields, K. A. Olive, and JCAP, “An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens,” Journal of Cosmology and Astroparticle Physics, vol. 2008, no. 11, article 12, 2008.
[59]  A. J. Korn, F. Grundahl, O. Richard et al., “A probable stellar solution to the cosmological lithium discrepancy,” Nature, vol. 442, pp. 657–659, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133