全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States

DOI: 10.1155/2011/637593

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of the molecule with 4.63?eV photons into the ultrashort-lived 1B state yields the well-known ring opening to 1,3,5-hexatriene, while a 5.99?eV photon lifts the molecule directly into the 3p-Rydberg state. Excitation to 3p does not induce ring opening. In both experiments, time-dependent shifts of the Rydberg electron binding energy reflect the structural dynamics of the molecular core. Structural distortions associated with 3p-excitation cause a dynamical shift in the - and -binding energies by 10 and 26?meV/ps, respectively, whereas after excitation into 1B, more severe structural transformations along the ring-opening coordinate produce shifts at a rate of 40 to 60?meV/ps. The experiment validates photoionization-photoelectron spectroscopy via Rydberg states as a powerful technique to observe structural dynamics of polyatomic molecules. 1. Introduction The photochemical ring-opening reaction of 1,3-cyclohexadiene (CHD) is widely studied due to its important role as a prototype for important reactions in chemistry as well as in biological systems [1, 2]. Upon excitation to the 1B valence state, the reaction path carries the molecule within about 140?fs along the ring-opening coordinate through the 1B/2A and 2A/1A conical intersections back to the ground state [3–7]. But even while these curve-crossing transitions are now well understood, numerous questions remain. Of particular interest are the geometric changes occurring in the molecule after excitation into the 1B-valence state and as the molecule travels through the electronic states, as such structural motions have eluded direct experimental observation. As has been pointed out, [5, 6, 8, 9] the wave packet remains quite narrow during the reaction, implying that “structure” is a well-defined quantity even though it rapidly evolves. Moreover, it is unknown if higher-lying electronic states follow ring-opening pathways similar to that following the 1B excitation, or if other unique mechanisms emerge. Because the dynamics is determined by the rapid motions of wave packets on intricately sculptured surfaces [8], a dependence on the excitation energy is to be expected. The observation of structural dynamics, that is, structural changes during chemical reactions, is one of the grand challenges, not only in the investigation of the CHD ring-opening reaction, but for the field of chemical

References

[1]  M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, VCH, New York, NY, USA, 1995.
[2]  D. Feldman, F. H. Glorieux, and J. W. Pikre, Eds., Vitamin D, Academic Press, San Diego, Calif, USA, 1997.
[3]  M. Merchán, L. Serrano-Andrés, L. S. Slater, B. O. Roos, R. McDiarmid, and X. Xing, “Electronic spectra of 1,4-cyclohexadiene and 1,3-cyclohexadiene: a combined experimental and theoretical investigation,” Journal of Physical Chemistry A, vol. 103, no. 28, pp. 5468–5476, 1999.
[4]  M. Garavelli, C. S. Page, P. Celani et al., “Reaction path of a sub-200 fs photochemical electrocyclic reaction,” Journal of Physical Chemistry A, vol. 105, no. 18, pp. 4458–4469, 2001.
[5]  K. Kosma, S. A. Trushin, W. Fu?, and W. E. Schmid, “Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path,” Physical Chemistry Chemical Physics, vol. 11, no. 1, pp. 172–181, 2009.
[6]  S. Deb and P. M. Weber, “The ultrafast pathway of photon-induced electrocyclic ring-opening reactions: the case of 1,3-cyclohexadiene,” Annual Review of Physical Chemistry, vol. 62, pp. 19–39, 2011.
[7]  N. Kuthirummal, F. M. Rudakov, C. L. Evans, and P. M. Weber, “Spectroscopy and femtosecond dynamics of the ring opening reaction of 1,3-cyclohexadiene,” Journal of Chemical Physics, vol. 125, Article ID 133307, 8 pages, 2006.
[8]  J. B. Sch?nborn, J. Sielk, and B. Hartke, “Photochemical ring-opening of cyclohexadiene: quantum wavepacket dynamics on a global Ab Initio potential energy surface,” Journal of Physical Chemistry A, vol. 114, no. 12, pp. 4036–4044, 2010.
[9]  W. Fu?, W. E. Schmid, and S. A. Trushin, “Time-resolved dissociative intense-laser field ionization for probing dynamics: femtosecond photochemical ring opening of 1,3-cyclohexadiene,” Journal of Chemical Physics, vol. 112, no. 19, pp. 8347–8362, 2000.
[10]  X. Liang, M. G. Levy, S. Deb, J. D. Geiser, R. M. Stratt, and P. M. Weber, “Electron diffraction with bound electrons: the structure sensitivity of Rydberg Fingerprint Spectroscopy,” Journal of Molecular Structure, vol. 978, no. 1–3, pp. 250–256, 2010.
[11]  A. M. Lindenberg, I. Kang, S. L. Johnson et al., “Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition,” Physical Review Letters, vol. 84, no. 1, pp. 111–114, 2000.
[12]  R. C. Dudek and P. M. Weber, “Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene,” Journal of Physical Chemistry A, vol. 105, no. 17, pp. 4169–4171, 2001.
[13]  H. Ihee, V. A. Lobastov, U. M. Gomez et al., “Direct imaging of transient molecular structures with ultrafast diffraction,” Science, vol. 291, no. 5503, pp. 458–462, 2001.
[14]  J. D. Cardoza, R. C. Dudek, R. J. Mawhorter, and P. M. Weber, “Centering of ultrafast time-resolved pump-probe electron diffraction patterns,” Chemical Physics, vol. 299, no. 2-3, pp. 307–312, 2004.
[15]  N. Kuthirummal and P. M. Weber, “Rydberg states: sensitive probes of molecular structure,” Chemical Physics Letters, vol. 378, no. 5-6, pp. 647–653, 2003.
[16]  W. Cheng, N. Kuthirummal, J. L. Gosselin, T. I. S?lling, R. Weinkauf, and P. M. Weber, “Control of local ionization and charge transfer in the bifunctional molecule 2-phenylethyl-N,N-dimethylamine using rydberg fingerprint spectroscopy,” Journal of Physical Chemistry A, vol. 109, no. 9, pp. 1920–1925, 2005.
[17]  J. L. Gosselin and P. M. Weber, “Rydberg fingerprint spectroscopy: a new spectroscopic tool with local and global structural sensitivity,” Journal of Physical Chemistry A, vol. 109, no. 22, pp. 4899–4904, 2005.
[18]  N. Kuthirummal and P. M. Weber, “Structure sensitive photoionization via Rydberg levels,” Journal of Molecular Structure, vol. 787, no. 1–3, pp. 163–166, 2006.
[19]  J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, “Identification of isomeric hydrocarbons by Rydberg photoelectron spectroscopy,” Journal of Electron Spectroscopy and Related Phenomena, vol. 165, no. 1–3, pp. 5–10, 2008.
[20]  M. P. Minitti, J. L. Gosselin, T. I. S?lling, and P. M. Weber, “The ultrafast photofragmentation pathway of N,N-dimethylisopropylamine,” in FemtoChemistry VII, M. L. Kimble, Ed., Elsevier, New York, NY, USA, 2006.
[21]  J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. S?lling, and P. M. Weber, “Energy flow and fragmentation dynamics of N,N-dimethylisopropylamine,” Journal of Physical Chemistry A, vol. 110, no. 12, pp. 4251–4255, 2006.
[22]  N. Kuthirummal and P. M. Weber, “Probing reaction dynamics with Rydberg states: the ring opening reaction of 1,3-cyclohexadiene,” in Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science, M. Martin and J. T. Hynes, Eds., Elsevier, New York, NY, USA, 2004.
[23]  Y. Liu, J. Lin, G. Huang, Y. Guo, and C. Duan, “Simple empirical analytical approximation to the Voigt profile,” Journal of the Optical Society of America B, vol. 18, no. 5, pp. 666–672, 2001.
[24]  http://webbook.nist.gov.
[25]  F. Rudakov and P. M. Weber, “Ground state recovery and molecular structure upon ultrafast transition through conical intersections in cyclic dienes,” Chemical Physics Letters, vol. 470, no. 4–6, pp. 187–190, 2009.
[26]  J. Bao and P. M. Weber, “Ultrafast dynamics of highly excited trans-stilbene: a different twist,” Journal of Physical Chemistry Letters, vol. 1, no. 1, pp. 224–227, 2010.
[27]  J. D. Cardoza, F. M. Rudakov, and P. M. Weber, “Electronic spectroscopy and ultrafast energy relaxation pathways in the lowest rydberg states of trimethylamine,” Journal of Physical Chemistry A, vol. 112, no. 43, pp. 10736–10743, 2008.
[28]  B. Kim, N. Thantu, and P. M. Weber, “High resolution photoelectron spectroscopy: the vibrational spectrum of the 2-aminopyridine cation,” The Journal of Chemical Physics, vol. 97, no. 8, pp. 5384–5391, 1992.
[29]  M. P. Minitti, J. D. Cardoza, and P. M. Weber, “Rydberg fingerprint spectroscopy of hot molecules: structural dispersion in flexible hydrocarbons,” Journal of Physical Chemistry A, vol. 110, no. 34, pp. 10212–10218, 2006.
[30]  C. P. Schick, S. D. Carpenter, and P. M. Weber, “Femtosecond multiphoton ionization photoelectron spectroscopy of the S2 state of phenol,” Journal of Physical Chemistry A, vol. 103, no. 49, pp. 10470–10476, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133