全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Amyotrophic Lateral Sclerosis and Metabolomics: Clinical Implication and Therapeutic Approach

DOI: 10.1155/2013/538765

Full-Text   Cite this paper   Add to My Lib

Abstract:

Amyotrophic lateral sclerosis (ALS) is one of the most common motor neurodegenerative disorders, primarily affecting upper and lower motor neurons in the brain, brainstem, and spinal cord, resulting in paralysis due to muscle weakness and atrophy. The majority of patients die within 3–5 years of symptom onset as a consequence of respiratory failure. Due to relatively fast progression of the disease, early diagnosis is essential. Metabolomics offer a unique opportunity to understand the spatiotemporal metabolic crosstalks through the assessment of body fluids and tissue. So far, one of the most challenging issues related to ALS is to understand the variation of metabolites in body fluids and CNS with the progression of disease. In this paper we will review the changes in metabolic profile in response to disease progression condition and also see the therapeutic implication of various drugs in ALS patients. 1. Introduction Motor neuron diseases (MND) are a heterogeneous group of disorders which result in death of motor neurons. These diseases may give rise to characteristic perturbations of the metabolome. Amyotrophic lateral sclerosis (ALS) is the most common form of MND in adults, affecting both anterior horn cells and corticospinal tracts. “Amyotrophic” refers to the muscle atrophy, weakness, and fasciculation that signify disease of the motor neurons. The median age of ALS onset is 55 years. Fifty percent of patients die within three years of onset of symptoms, and 90% die within five years [1]. The incidence of ALS is from approximately 2 per 100,000 per year [2] and may be increasing [3]. The lifetime risk of ALS is 1 in 600 to 1 in 1000. The majority of ALS cases which have been reported are sporadic (SALS); 10% are familial (FALS), some of which arise from mutations in superoxide dismutase-1 (SOD1) [4], TAR DNA-binding protein (TDP43) [5, 6] and fused in sarcoma/translated in liposarcoma (FUS/TLS) [7, 8], ALS2 [9, 10], dynactin [11], and senataxin [12]. Genomic studies suggest the existence of at least eleven additional loci for FALS, but the genetic defects remain to be identified [13]. Using a genome-wide association study (GWAs) approach, it has been recently reported that a locus on chromosome 9p21 accounted for 40% of familial ALS and nearly 1 fourth of all ALS cases in a sample of 405 Finnish patients [14]. This association signal had previously been reported by van Es et al. [15] as related to ALS, and a meta-analysis amongst many studies showed that this was indeed the major signal for this disease [16]. Similarly, recent GWAs for

References

[1]  J. Kurtzke and L. Kurland, “The epidemiology of neurologic disease,” in Clinical Neurology, R. Joynt, Ed., pp. 1–43, J. B. Lippincot, Philadelphia, Pa, USA, 1989.
[2]  V. McGuire, W. Longstreth, T. D. Koepsell, and G. van Belle, “Incidence of amyotrophic lateral sclerosis in three counties in western Washington state,” Neurology, vol. 47, no. 2, pp. 571–573, 2006.
[3]  D. E. Lilienfeld, E. Chan, J. Ehland et al., “Rising mortality from motoneuron disease in the USA, 1962–84,” Lancet, vol. 1, pp. 710–713, 1989.
[4]  D. Rosen, T. Siddique, D. Patterson et al., et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, pp. 59–62, 1993.
[5]  E. Kabashi, P. N. Valdmanis, P. Dion et al., et al., “TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis,” Nature Genetics, vol. 40, pp. 572–574, 2008.
[6]  J. Sreedharan, I. P. Blair, V. B. Tripathi et al., et al., “TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis,” Science, vol. 319, pp. 1668–1672, 2008.
[7]  T. J. Kwiatkowski Jr., D. A. Bosco, A. L. Leclerc et al., et al., “Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis,” Science, vol. 323, pp. 1205–1208, 2009.
[8]  C. Vance, B. Rogeli, T. Hortobagyi et al., et al., “Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6,” Science, vol. 323, pp. 1208–1211, 2009.
[9]  S. Hadano, C. Hand, H. Osuga et al., et al., “A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis,” Nature Genetics, vol. 29, pp. 166–173, 2001.
[10]  Y. Yang, A. Hentati, H. Deng et al., et al., “The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis,” Nature Genetics, vol. 29, pp. 160–165, 2001.
[11]  I. Puls, C. Jonnakuty, B. LaMonte et al., et al., “Mutant dynactin in motor neuron disease,” Nature Genetics, vol. 33, pp. 455–456, 2003.
[12]  D. Lambrechts, E. Storkebaum, M. Morimoto et al., et al., “VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death,” Nature Genetics, vol. 34, pp. 383–394, 2003.
[13]  P. M. Andersen, G. D. Borasio, R. Dengler et al., “EFNS task force on management of amyotrophic lateral sclerosis: guidelines for diagnosing and clinical care of patients and relatives: an evidence-based review with good practice points,” European Journal of Neurology, vol. 12, no. 12, pp. 921–938, 2005.
[14]  H. Laaksovirta, T. Peuralinna, J. C. Schymick, et al., “A substantial proportion of ALS in Finland is explained by the chromosome 9p21 locus,” Lancet Neurology, vol. 9, pp. 78–85, 2010.
[15]  M. A. van Es, J. H. Veldink, C. G. Saris et al., et al., “Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis,” Nature Genetic, vol. 41, pp. 1083–1087, 2009.
[16]  A. Shatunov, K. Mok, S. Newhouse et al., “Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study,” The Lancet Neurology, vol. 9, no. 10, pp. 986–994, 2010.
[17]  V. M. van Deerlin, P. M. Sleiman, M. Martinez-Lage et al., et al., “Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions,” Nature Genetic, vol. 42, pp. 234–239, 2010.
[18]  A. L. Boxer, I. R. Mackenzie, B. F. Boeve et al., “Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 82, no. 2, pp. 196–203, 2011.
[19]  M. Morita, A. Al-Chalabi, P. M. Andersen, et al., “A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia,” Neurology, vol. 66, pp. 839–844, 2006.
[20]  J. P. Pearson, N. M. Williams, E. Majounie et al., “Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p,” Journal of Neurology, vol. 258, no. 4, pp. 647–655, 2011.
[21]  C. Vance, A. Al-Chalabi, D. Ruddy et al., “Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3,” Brain, vol. 129, no. 4, pp. 868–876, 2006.
[22]  A. E. Renton, E. Majounie, A. Waite et al., “A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD,” Neuron, vol. 72, no. 2, pp. 257–268, 2011.
[23]  E. Majounie, A. E. Renton, K. Mok et al., “Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study,” The Lancet Neurology, vol. 11, no. 4, pp. 323–330, 2012.
[24]  H. Deng, W. Chen, S. Hong et al., “Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia,” Nature, vol. 477, no. 7363, pp. 211–215, 2011.
[25]  F. Fecto, J. Yan, S. P. Vemula et al., “SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis,” Archives of Neurology, vol. 68, no. 11, pp. 1440–1446, 2011.
[26]  A. Kumar, V. Bhardwaj, J. N. Tiwari et al., “Mercury exposure in sporadic amyotrophic lateral sclerosis patients from Ganga plain region in India: a retrospective study,” Toxicological and Environmental Chemistry, vol. 92, no. 2, pp. 373–381, 2010.
[27]  G. N. Babu, A. Kumar, R. Chandra, et al., “Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease,” Neurochemistry International, vol. 52, pp. 1284–1289, 2008.
[28]  D. W. Cleveland and J. D. Rothstein, “From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS,” Nature Reviews Neuroscience, vol. 2, no. 11, pp. 806–819, 2001.
[29]  G. G. Harrigan and R. Goodacre, Metabolic Profiling: It’s Role in Biomarker discovery and Gene Function analysis, Kluwer Academic, Boston, Mass, USA, 2003.
[30]  J. K. Nicholson, E. Holmes, and I. D. Wilson, “Gut microorganisms, mammalian metabolism and personalized health care,” Nature Reviews Microbiology, vol. 3, pp. 431–438, 2006.
[31]  S. Kochhar, D. M. Jacobs, Z. Ramadan, et al., “Probing gender-specific etabolism differences in humans by nuclear magnetic resonance-based metabonomics,” Analytical Biochemistry, vol. 352, pp. 274–281, 2006.
[32]  D. I. Ellis, W. B. Dunn, J. L. Griffin, et al., “Metabolic fingerprinting as a diagnostic tool,” Pharmacogenomics, vol. 8, pp. 1243–1266, 2007.
[33]  J. K. Nicholson, E. Holmes, J. C. Lindon, and I. D. Wilson, “The challenges of modeling mammalian biocomplexity,” Nature Biotechnology, vol. 22, no. 10, pp. 1268–1274, 2004.
[34]  R. M. Mitchell, W. M. Freeman, W. T. Randazzo et al., “A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis,” Neurology, vol. 72, no. 1, pp. 14–19, 2009.
[35]  S. D. Sussmuth, J. Brettschneider, A. C. Ludolph, et al., “Biochemical markers in CSF of ALS patients,” Current Medicinal Chemistry, vol. 15, no. 18, pp. 1788–1801, 2008.
[36]  H. Tumani, C. Teunissen, S. Sussmuth, et al., “Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases,” Expert Review of Molecular Diagnostics, vol. 8, pp. 479–494, 2008.
[37]  M. P. Quinones and R. Kaddurah-Daouk, “Metabolomics tools for identifying biomarkers for neuropsychiatric diseases,” Neurobiology of Disease, vol. 35, no. 2, pp. 165–176, 2009.
[38]  S. Rozen, M. E. Cudkowicz, M. Bogdanov, et al., “Metabolomic analysis and signatures in motor neuron disease,” Metabolomics, vol. 1, pp. 101–108, 2005.
[39]  A. Kumar, L. Bala, J. Kalita et al., “Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis,” Clinica Chimica Acta, vol. 411, no. 7-8, pp. 563–567, 2010.
[40]  Plaitakis, “Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis,” Annals of Neurology, vol. 28, no. 1, pp. 3–8, 1990.
[41]  G. N, Babu, M. Bawari, V. N. Mathur, et al., “Blood glutamate levels in patients with motor neuron disease,” Clinica Chimica Acta, vol. 273, pp. 195–200, 2008.
[42]  E. P. Pioro, “MR spectroscopy in amyotrophic lateral sclerosis/motor neuron disease,” Journal of the Neurological Sciences, vol. 152, no. 1, pp. S49–S53, 1997.
[43]  P. J. Shaw, V. Forrest, P. G. Ince, J. P. Richardson, and H. J. Wastell, “CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients,” Neurodegeneration, vol. 4, no. 2, pp. 209–216, 1995.
[44]  P. R. Heath and P. J. Shaw, “Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 26, no. 4, pp. 438–458, 2002.
[45]  L. Dupuis, O. Spreux-Varoquaux, G. Bensimon et al., “Platelet serotonin level predicts survival in amyotrophic lateral sclerosis,” PLoS One, vol. 5, no. 10, Article ID e13346, 2010.
[46]  I. L. Simone, M. Ruggieri, R. Tortelli et al., “Serum N-acetylaspartate level in amyotrophic lateral sclerosis,” Archives of Neurology, vol. 68, no. 10, pp. 1308–1312, 2011.
[47]  P. B. E. Woolsey, “Cysteine, sulfite, and glutamate toxicity: a cause of ALS?” Journal of Alternative and Complementary Medicine, vol. 14, no. 9, pp. 1159–1164, 2008.
[48]  M. E. Wilson, I. Boumaza, D. Lacomis, and R. Bowser, “Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis,” PLoS ONE, vol. 5, no. 12, Article ID e15133, 2010.
[49]  H. Zetterberg, J. Jacobsson, L. Rosengren, K. Blennow, and P. M. Andersen, “Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype,” European Journal of Neurology, vol. 14, no. 12, pp. 1329–1333, 2007.
[50]  J. Y. Zhou, L. Afjehi-Sadat, S. Asress, et al., “Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach,” Journal of Proteome Research, vol. 9, pp. 5133–5141, 2010.
[51]  H. Blasco, P. Corcia, C. Moreau et al., “1H-NMR-Based metabolomic profiling of CSF in early amyotrophic lateral sclerosis,” PLoS ONE, vol. 5, no. 10, Article ID e13223, 2010.
[52]  Y. Ihara, K. Nobukuni, H. Takata, and T. Hayabara, “Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation,” Neurological Research, vol. 27, no. 1, pp. 105–108, 2005.
[53]  G. P. Paraskevas, E. Kapaki, G. Libitaki, C. Zournas, I. Segditsa, and C. Papageorgiou, “Ascorbate in healthy subjects, amyotrophic lateral sclerosis and Alzheimer's disease,” Acta Neurologica Scandinavica, vol. 96, no. 2, pp. 88–90, 1997.
[54]  J. X. Wilson, C. E. Peters, S. M. Sitar, P. Daoust, and A. W. Gelb, “Glutamate stimulates ascorbate transport by astrocytes,” Brain Research, vol. 858, no. 1, pp. 61–66, 2000.
[55]  M. A. Castro, M. Pozo, C. Cortes, et al., “Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes,” Journal of Neurochemistry, vol. 102, pp. 773–782, 2000.
[56]  J. D. Rothstein, G. Tsai, R. W. Kuncl et al., “Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 28, no. 1, pp. 18–25, 1990.
[57]  O. Spreux-Varoquaux, G. Bensimon, L. Lacomblez et al., “Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients,” Journal of the Neurological Sciences, vol. 193, no. 2, pp. 73–78, 2002.
[58]  T. L. Perry, C. Krieger, S. Hansen, and A. Eisen, “Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid,” Annals of Neurology, vol. 28, no. 1, pp. 12–17, 1990.
[59]  M. A. Castro, F. A. Beltrán, S. Brauchi, and I. I. Concha, “A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid,” Journal of Neurochemistry, vol. 110, no. 2, pp. 423–440, 2009.
[60]  A. Wuolikainen, P. M. Andersen, T. Moritz, S. L. Marklund, and H. Antti, “ALS patients with mutations in the SOD1 gene have an unique metabolomic profile in the cerebrospinal fluid compared with ALS patients without mutations,” Molecular Genetics and Metabolism, vol. 105, no. 3, pp. 472–478, 2012.
[61]  M. Tachikawa, Y. Kasai, M. Takahashi et al., “The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process,” Journal of Neurochemistry, vol. 107, no. 2, pp. 432–442, 2008.
[62]  E. M. Gal and A. D. Sherman, “Synthesis and metabolism of L-kynurenine in rat brain,” Journal of Neurochemistry, vol. 30, no. 3, pp. 607–613, 1978.
[63]  D. A. Bender and G. M. McCreanor, “The preferred route of kynurenine metabolism in the rat,” Biochimica et Biophysica Acta, vol. 717, no. 1, pp. 56–60, 1982.
[64]  M. Salter and C. I. Pogson, “The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells: effects of glucocorticoids and experimental diabetes,” Biochemical Journal, vol. 229, no. 2, pp. 499–504, 1985.
[65]  O. Takikawa, R. Yoshida, R. Kido, and O. Hayaishi, “Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase,” Journal of Biological Chemistry, vol. 261, no. 8, pp. 3648–3653, 1986.
[66]  T. W. Stone, “Kynurenines in the CNS: from endogenous obscurity to therapeutic importance,” Progress in Neurobiology, vol. 64, no. 2, pp. 185–218, 2001.
[67]  T. W. Stone and M. N. Perkins, “Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS,” European Journal of Pharmacology, vol. 72, no. 4, pp. 411–412, 1981.
[68]  M. N. Perkins and T. W. Stone, “An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid,” Brain Research, vol. 247, no. 1, pp. 184–187, 1982.
[69]  J. R. Moffett and M. A. Namboodiri, “Tryptophan and the immune response,” Immunology and Cell Biology, vol. 81, no. 4, pp. 247–265, 2003.
[70]  B. E. Kalisch, K. Jhamandas, R. J. Boegman, and R. J. Beninger, “Picolinic acid protects against quinolinic acid-induced depletion of NADPH diaphorase containing neurons in the rat striatum,” Brain Research, vol. 668, no. 1-2, pp. 1–8, 1994.
[71]  K. H. Jhamandas, K. H. R. J. Boegman, R. J. Beninger, et al., “Excitotoxicity of quinolinic acid: modulation by endogenous antagonists,” Neurotoxicity Research, vol. 2, pp. 139–155, 2000.
[72]  G. J. Guillemin, V. Meininger, and B. J. Brew, “Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis,” Neurodegenerative Diseases, vol. 2, no. 3-4, pp. 166–176, 2005.
[73]  H. Zhang, C. Andrekopoulos, J. Joseph et al., “Bicarbonate-dependent peroxidase activity of human Cu,Zn-superoxide dismutase induces covalent aggregation of protein. Intermediacy of tryptophan-derived oxidation products,” Journal of Biological Chemistry, vol. 278, no. 26, pp. 24078–24089, 2003.
[74]  W. A. Turski, M. Nakamura, W. P. Todd, et al., “Identification and quantification of kynurenic acid in human brain tissue,” Brain Research, vol. 454, pp. 164–169, 1988.
[75]  A. P. Smith and N. M. Lee, “Role of zinc in ALS,” Amyotrophic Lateral Sclerosis, vol. 8, no. 3, pp. 131–143, 2007.
[76]  J. I?zecka, Kocki, Stelmasiak, and Turski, “Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis,” Acta Neurologica Scandinavica, vol. 107, no. 6, pp. 412–418, 2003.
[77]  Y. Chen, B. J. Brew, and G. J. Guillemin, “Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 118, no. 5, pp. 816–825, 2011.
[78]  S. M. Sullivan, A. Lee, S. T. Bjorkman, et al., “Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP,” Journal of Biological Chemistry, vol. 282, pp. 29414–29423, 2007.
[79]  G. J. Guillemin, S. J. Kerr, P. G. Smyth, et al., “Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection,” Journal of Neurochemistry, vol. 78, pp. 842–853, 2001.
[80]  G. J. Guillemin, K. M. Cullen, C. K. Lim, et al., “Characterization of the kynurenine pathway in human neurons,” Journal of Neuroscience, vol. 27, pp. 12884–12892, 2007.
[81]  A. Santamaria, S. Galvan-Arzate, V. Lisy, et al., “Quinolinic acid induces oxidative stress in rat brain synaptosomes,” Neuroreport, vol. 12, pp. 871–874, 2001.
[82]  F. Du, W. Schmidt, E. Okuno, R. Kido, C. Kohler, and R. Schwarcz, “Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus,” Journal of Comparative Neurology, vol. 321, no. 3, pp. 477–487, 1992.
[83]  D. Schiffer, S. Cordera, P. Cavalla, and A. Migheli, “Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 139, pp. 27–33, 1996.
[84]  S. J. Feeney, P. A. McKelvie, L. Austin et al., “Presymptomatic motor neuron loss and reactive astrocytosis in the sod1 mouse model of amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 24, no. 11, pp. 1510–1519, 2001.
[85]  C. Bendotti, M. Tortarolo, S. K. Suchak et al., “Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels,” Journal of Neurochemistry, vol. 79, no. 4, pp. 737–746, 2001.
[86]  S. Kato, “Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences,” Acta Neuropathologica, vol. 115, no. 1, pp. 97–114, 2008.
[87]  E. Naganska and E. Matyja, “Amyotrophic lateral sclerosis—looking for pathogenesis and effective therapy,” Folia Neuropathologica, vol. 49, no. 1, pp. 1–13, 2011.
[88]  M. Filippi, F. Agosta, S. Abrahams et al., “EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases,” European Journal of Neurology, vol. 17, no. 4, pp. 526–533, 2010.
[89]  M. R. Turner and M. Modo, “Advances in the application of MRI to amyotrophic lateral sclerosis,” Expert Opinion on Medical Diagnostics, vol. 4, no. 6, pp. 483–496, 2010.
[90]  B. C. Bowen, P. M. Pattany, W. G. Bradley et al., “MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis,” American Journal of Neuroradiology, vol. 21, no. 4, pp. 647–658, 2000.
[91]  S. Chan, D. C. Shungu, A. Douglas-Akinwande, D. J. Lange, and L. P. Rowland, “Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain,” Radiology, vol. 212, no. 3, pp. 763–769, 1999.
[92]  A. Charil, M. Corbo, M. Filippi et al., “Structural and metabolic changes in the brain of patients with upper motor neuron disorders: a multiparametric MRI study,” Amyotrophic Lateral Sclerosis, vol. 10, no. 5-6, pp. 269–279, 2009.
[93]  S. Kalra, C. C. Hanstock, W. R. W. Martin, P. S. Allen, and W. S. Johnston, “Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy,” Archives of Neurology, vol. 63, no. 8, pp. 1144–1148, 2006.
[94]  C. Pohl, W. Block, J. Karitzky et al., “Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis,” Archives of Neurology, vol. 58, no. 5, pp. 729–735, 2001.
[95]  W. D. Rooney, R. G. Miller, D. Gelinas, N. Schuff, A. A. Maudsley, and M. W. Weiner, “Decreased N-acetylaspartate in motor cortex and corticospinal tract in ALS,” Neurology, vol. 50, no. 6, pp. 1800–1805, 1998.
[96]  P. Sarchielli, G. P. Pelliccioli, R. Tarducci et al., “Magnetic resonance imaging and 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis,” Neuroradiology, vol. 43, no. 3, pp. 189–197, 2001.
[97]  A. Unrath, A. C. Ludolph, and J. Kassubek, “Brain metabolites in definite amyotrophic lateral sclerosis: a longitudinal proton magnetic resonance spectroscopy study,” Journal of Neurology, vol. 254, no. 8, pp. 1099–1106, 2007.
[98]  W. Block, F. Tr?ber, S. Flacke, F. Jessen, C. Pohl, and H. Schild, “In-vivo proton MR-spectroscopy of the human brain: assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration,” Amino Acids, vol. 23, no. 1–3, pp. 317–323, 2002.
[99]  R. R. Rule, Suhy, Schuff, Gelinas, Miller, and Weiner, “Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 5, no. 3, pp. 141–149, 2004.
[100]  H. Mitsumoto, A. M. Ulug, S. L. Pullman, et al., “Quantitative objective markers for upper and lower motor neuron dysfunction in ALS,” Neurology, vol. 68, pp. 1402–1410, 2007.
[101]  H. Yin, C. C. T. Lim, L. Ma et al., “Combined MR spectroscopic imaging and diffusion tensor MRI visualizes corticospinal tract degeneration in amyotrophic lateral sclerosis,” Journal of Neurology, vol. 251, no. 10, pp. 1249–1254, 2004.
[102]  S. Wang, H. Poptani, J. H. Woo, et al., “Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T,” Radiology, vol. 239, pp. 831–838, 2006.
[103]  T. Pyra, B. Hui, C. Hanstock et al., “Combined structural and neurochemical evaluation of the corticospinal tract in amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 11, no. 1-2, pp. 157–165, 2010.
[104]  J. Urenjak, S. R. Williams, D. G. Gadian, and M. Noble, “Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro,” Journal of Neurochemistry, vol. 59, no. 1, pp. 55–61, 1992.
[105]  L. Chang, T. Ernst, D. Osborn, W. Seltzer, M. Leonido-Yee, and R. E. Poland, “Proton spectroscopy in myotonic dystrophy: correlations with CTG repeats,” Archives of Neurology, vol. 55, no. 3, pp. 305–311, 1998.
[106]  J. Urenjak, S. R. Williams, D. G. Gadian, and M. Noble, “Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types,” Journal of Neuroscience, vol. 13, no. 3, pp. 981–989, 1993.
[107]  N. R. Jagannathan, N. G. Desai, and P. Raghunathan, “Brain metabolite changes in alcoholism: an in vivo proton magnetic resonance spectroscopy (MRS) study,” Magnetic Resonance Imaging, vol. 14, no. 5, pp. 553–557, 1996.
[108]  O. Gredal, S. Rosenbaum, S. Topp, M. Karlsborg, P. Strange, and L. Werdelin, “Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy,” Neurology, vol. 48, no. 4, pp. 878–881, 1997.
[109]  A. P. Jones, W. J. Gunawardena, C. M. A. Coutinho, J. A. Gatt, I. C. Shaw, and J. D. Mitchell, “Preliminary results of proton magnetic resonance spectroscopy in motor neurone disease (amytrophic lateral sclerosis),” Journal of the Neurological Sciences, vol. 129, pp. 85–89, 1995.
[110]  E. P. Pioro, J. P. Antel, N. R. Cashman, and D. L. Arnold, “Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo,” Neurology, vol. 44, no. 10, pp. 1933–1938, 1994.
[111]  J. Suhy, R. G. Miller, R. Rule, et al., “Early detection and longitudinal changes in amyotrophic lateral sclerosis by (1)H MRS,” Neurology, vol. 58, pp. 773–779, 2002.
[112]  S. Boillee, K. Yamanaka, C. S. Lobsiger, et al., “Onset and progression in inherited ALS determined by motor neurons and microglia,” Science, vol. 312, pp. 1389–1392, 2006.
[113]  A. M. Clement, M. D. Nguyen, E. A. Roberts et al., et al., “Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice,” Science, vol. 302, pp. 113–117, 2003.
[114]  J. Desport, F. Torny, M. Lacoste, P. Preux, and P. Couratier, “Hypermetabolism in ALS: correlations with clinical and paraclinical parameters,” Neurodegenerative Diseases, vol. 2, no. 3-4, pp. 202–207, 2006.
[115]  B. Funalot, J. Desport, F. Sturtz, W. Camu, and P. Couratier, “High metabolic level in patients with familial amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 10, no. 2, pp. 113–117, 2009.
[116]  F. R. Wiedemann, K. Winkler, A. V. Kuznetsov et al., “Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 156, no. 1, pp. 65–72, 1998.
[117]  S. Vielhaber, K. Winkler, E. Kirches et al., “Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 169, no. 1-2, pp. 133–139, 1999.
[118]  S. Vielhaber, D. Kunz, K. Winkler et al., “Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis,” Brain, vol. 123, no. 7, pp. 1339–1348, 2000.
[119]  L. Dupuis, H. Oudart, F. René, J. Gonzalez De Aguilar, and J. Loeffler, “Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11159–11164, 2004.
[120]  P. Chiang, J. Ling, Y. H. Jeong, D. L. Price, S. M. Aja, and P. C. Wong, “Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 37, pp. 16320–16324, 2010.
[121]  Y. Xu, T. F. Gendron, Y. Zhang et al., “Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice,” Journal of Neuroscience, vol. 30, no. 32, pp. 10851–10859, 2010.
[122]  X. Shan, P. Chiang, D. L. Price, and P. C. Wong, “Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 37, pp. 16325–16330, 2010.
[123]  W. Derave, L. van den Bosch, G. Lemmens, B. O. Eijnde, W. Robberecht, and P. Hespel, “Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment,” Neurobiology of Disease, vol. 13, no. 3, pp. 264–272, 2010.
[124]  L. Dupuis, F. di Scala, F. Rene et al., “Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis,” The FASEB Journal, vol. 17, no. 14, pp. 2091–2093, 2003.
[125]  J. Gonzalez De Aguilar, C. Niederhauser-Wiederkehr, B. Halter et al., “Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model,” Physiological Genomics, vol. 32, no. 2, pp. 207–218, 2008.
[126]  V. Crugnola, C. Lamperti, V. Lucchini et al., “Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis,” Archives of Neurology, vol. 67, no. 7, pp. 849–854, 2010.
[127]  A. Echaniz-Laguna, J. Zoll, E. Ponsot et al., “Muscular mitochondrial function in amyotrophic lateral sclerosis is progressively altered as the disease develops: a temporal study in man,” Experimental Neurology, vol. 198, no. 1, pp. 25–30, 2006.
[128]  A. Echaniz-Laguna, J. Zoll, F. Ribera et al., “Mitochondrial respiratory chain function in skeletal muscle of ALS patients,” Annals of Neurology, vol. 52, no. 5, pp. 623–627, 2002.
[129]  L. J. Bradley, J. W. Taanman, C. Kallis, and R. W. Orrell, “Increased sensitivity of myoblasts to oxidative stress in amyotrophic lateral sclerosis peripheral tissues,” Experimental Neurology, vol. 218, no. 1, pp. 92–97, 2009.
[130]  J. Zhou, J. Yi, R. Fu et al., “Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis,” Journal of Biological Chemistry, vol. 285, no. 1, pp. 705–712, 2010.
[131]  S. Ono, G. L. Mechanic, and M. Yamauchi, “Amyotrophic lateral sclerosis: unusually low content of collagen in skin,” Journal of the Neurological Sciences, vol. 100, no. 1-2, pp. 234–237, 1990.
[132]  S. Ono and M. Yamauchi, “Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis,” Annals of Neurology, vol. 31, no. 3, pp. 305–310, 1992.
[133]  S. Ono and M. Yamauchi, “Amyotrophic lateral sclerosis: increased solubility of skin collagen,” Neurology, vol. 42, no. 8, pp. 1535–1539, 1992.
[134]  S. Ono, T. Imai, K. Takahashi et al., “Decreased type IV collagen of skin and serum in patients with amyotrophic lateral sclerosis,” Neurology, vol. 51, no. 1, pp. 114–120, 1998.
[135]  G. P. Rodriguez and J. Claus-Walker, “Measurement of hydroxylysine glycosides in urine and its application to spinal cord injury,” Journal of Chromatography, vol. 308, pp. 65–73, 1984.
[136]  W. C. Bisbee and P. C. Kelleher, “A method for measuring hydroxylysine and glycosylated hydroxylysines in urine and protein hydrolysates,” Clinica Chimica Acta, vol. 90, no. 1, pp. 29–36, 1978.
[137]  J. P. Segrest and L. W. Cunningham, “Variations in human urinary O-hydroxylysyl glycoside levels and their relationship to collagen metabolism,” Journal of Clinical Investigation, vol. 49, no. 8, pp. 1497–1509, 1970.
[138]  S. R. Pinnell, R. Fox, and S. M. Krane, “Human collagens: differences in glycosylated hydroxylysines in skin and bone,” Biochimica et Biophysica Acta, vol. 229, no. 1, pp. 119–122, 1971.
[139]  G. P. Rodriguez, J. Claus-Walker, M. C. Kent, and H. M. Garza, “Collagen metabolite excretion as a predictor of bone- and skin-related complications in spinal cord injury,” Archives of Physical Medicine and Rehabilitation, vol. 70, no. 6, pp. 442–444, 1989.
[140]  J. Claus Walker, J. Singh, C. S. Leach, D. V. Hatton, C. W. Hubert, and N. di Ferrante, “The urinary excretion of collagen degradation products by quadriplegic patients and during weightlessness,” Journal of Bone and Joint Surgery A, vol. 59, no. 2, pp. 209–212, 1977.
[141]  S. Ono, T. Imai, S. Munakata et al., “Collagen abnormalities in the spinal cord from patients with amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 160, no. 2, pp. 140–147, 1998.
[142]  S. Ono, T. Imai, K. Takahashi et al., “Alteration in amino acids in motor neurons of the spinal cord in amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 167, no. 2, pp. 121–126, 1999.
[143]  G. Bensimon, L. Lacomblez, and V. Meininger, “A controlled trial of riluzole in amyotrophic lateral sclerosis,” New England Journal of Medicine, vol. 330, no. 9, pp. 585–591, 1994.
[144]  L. Lacomblez, G. Bensimon, P. N. Leigh, P. Guillet, and V. Meininger, “Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II,” Lancet, vol. 347, no. 9013, pp. 1425–1431, 1996.
[145]  J. Mizoule, B. Meldrum, and M. Mazadier, “2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission. I: anticonvulsant properties,” Neuropharmacology, vol. 24, no. 8, pp. 767–773, 1985.
[146]  A. Cheramy, L. Barbeito, G. Godeheu, and J. Glowinski, “Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo,” Neuroscience Letters, vol. 147, no. 2, pp. 209–212, 1992.
[147]  D. Martin, M. A. Thompson, and J. V. Nadler, “The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1,” European Journal of Pharmacology, vol. 250, no. 3, pp. 473–476, 1993.
[148]  E. Benoit and D. Escande, “Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre,” Pflugers Archiv European Journal of Physiology, vol. 419, no. 6, pp. 603–609, 1991.
[149]  A. Doble, J. P. Hubert, and J. C. Blanchard, “Pertussis toxin pretreatment abolishes the inhibitory effect of riluzole and carbachol on D-[3H]aspartate release from cultured cerebellar granule cells,” Neuroscience Letters, vol. 140, no. 2, pp. 251–254, 1992.
[150]  P. H. Gordon, D. H. Moore, D. F. Gelinas et al., “Placebo-controlled phase I/II studies of minocycline in amyotrophic lateral sclerosis,” Neurology, vol. 62, no. 10, pp. 1845–1847, 2004.
[151]  J. Yrj?nheikki, T. Tikka, R. Kein?nen, G. Goldsteins, P. H. Chan, and J. Koistinaho, “A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13496–13500, 1999.
[152]  Y. Du, Z. Ma, S. Lin et al., “Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14669–14674, 2001.
[153]  D. C. Wu, V. Jackson-Lewis, M. Vila et al., “Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease,” Journal of Neuroscience, vol. 22, no. 5, pp. 1763–1771, 2002.
[154]  B. W. Festoff, S. Ameenuddin, P. M. Arnold, A. Wong, K. S. Santacruz, and B. A. Citron, “Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury,” Journal of Neurochemistry, vol. 97, no. 5, pp. 1314–1326, 2006.
[155]  F. Giuliani, W. Hader, and V. W. Yong, “Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction,” Journal of Leukocyte Biology, vol. 78, no. 1, pp. 135–143, 2005.
[156]  S. Zhu, I. G. Stavrovskaya, M. Drozda et al., “Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice,” Nature, vol. 417, no. 6884, pp. 74–78, 2002.
[157]  F. E. Pontieri, A. Ricci, C. Pellicano, D. Benincasa, and F. R. Buttarelli, “Minocycline in amyotrophic lateral sclerosis: a pilot study,” Neurological Sciences, vol. 26, no. 4, pp. 285–287, 2005.
[158]  P. H. Gordon, D. H. Moore, R. G. Miller et al., “Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial,” Lancet Neurology, vol. 6, no. 12, pp. 1045–1053, 2007.
[159]  J. Kriz, G. Gowing, and J. P. Julien, “Efficient three-drug cocktail for disease induced by mutant superoxide dismutase,” Annals of Neurology, vol. 53, no. 4, pp. 429–436, 2003.
[160]  J. Kriz, M. D. Nguyen, and J. P. Julien, “Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 10, no. 3, pp. 268–278, 2002.
[161]  L. van den Bosch, P. Tilkin, G. Lemmens, and W. Robberecht, “Minocycline delays disease onset and mortality in a transgenic model of ALS,” NeuroReport, vol. 13, no. 8, pp. 1067–1070, 2002.
[162]  J. D. Rothstein, S. Patel, M. R. Regan et al., “β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression,” Nature, vol. 433, no. 7021, pp. 73–77, 2005.
[163]  J. F. Poduslo, S. L. Whelan, G. L. Curran, et al., “Therapeutic benefit of polyamine-modified catalase as a scavenger of hydrogen peroxide and nitric oxide in familial amyotrophic lateral sclerosis transgenics,” Annal of Neurology, vol. 48, pp. 943–947, 2000.
[164]  M. M. Reinholz, C. M. Merkle, and J. F. Poduslo, “Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis,” Experimental Neurology, vol. 159, no. 1, pp. 204–216, 1999.
[165]  L. L. Dugan, E. G. Lovett, K. L. Quick, J. Lotharius, T. T. Lin, and K. L. O'Malley, “Fullerene-based antioxidants and neurodegenerative disorders,” Parkinsonism and Related Disorders, vol. 7, no. 3, pp. 243–246, 2001.
[166]  M. E. Gurney, F. B. Cutting, P. Zhai et al., “Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis,” Annals of Neurology, vol. 39, no. 2, pp. 147–157, 1996.
[167]  S. S. Gubbay, E. Kahana, and N. Zilber, “Amyotrophic lateral sclerosis. A study of its presentation and prognosis,” Journal of Neurology, vol. 232, no. 5, pp. 295–300, 1985.
[168]  E. J. Kasarskis, S. Berryman, J. G. Vanderleest, A. R. Schneider, and C. J. McClain, “Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death,” American Journal of Clinical Nutrition, vol. 63, no. 1, pp. 130–137, 1996.
[169]  L. A. Slowie, M. Paige, and J. P. Antel, “Nutritional considerations in the management of patients with amyotrophic lateral sclerosis (ALS),” Journal of the American Dietetic Association, vol. 83, no. 1, pp. 44–47, 1983.
[170]  V. Silani, “Nutritional management in amyotrophic lateral sclerosis: a worldwide perspective,” Journal of Neurology, vol. 245, no. 2, pp. S13–S19, 1998.
[171]  J. C. Desport, P. M. Preux, C. T. Truong, L. Courat, J. M. Vallat, and P. Couratier, “Nutritional assessment and survival in ALS patients,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 1, no. 2, pp. 91–96, 2000.
[172]  J. C. Desport, P. M. Preux, L. Magy, et al., “Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis,” The American Journal of Clinical Nutrition, vol. 74, pp. 328–334, 2001.
[173]  F. M. Menzies, P. G. Ince, and P. J. Shaw, “Mitochondrial involvement in amyotrophic lateral sclerosis,” Neurochemistry International, vol. 40, no. 6, pp. 543–551, 2002.
[174]  J. Kong and Z. Xu, “Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1,” Journal of Neuroscience, vol. 18, no. 9, pp. 3241–3250, 1998.
[175]  M. Mattiazzi, M. D’Aurelio, C. D. Gajewski, et al., “Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice,” The Journal of Biological Chemistry, vol. 277, pp. 29626–29633, 2002.
[176]  G. M. Borthwick, M. A. Johnson, P. G. Ince, et al., “Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of m itochondria in neuronal cell death,” Annals of Neurology, vol. 46, pp. 787–790, 1999.
[177]  F. R. Wiedemann, G. Manfredi, C. Mawrin, M. Flint Beal, and E. A. Schon, “Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients,” Journal of Neurochemistry, vol. 80, no. 4, pp. 616–625, 2002.
[178]  Y. Nakano, K. Hirayama, and K. Terao, “Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis,” Archives of Neurology, vol. 44, no. 1, pp. 103–106, 1987.
[179]  D. Curti, A. Malaspina, G. Facchetti et al., “Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes,” Neurology, vol. 47, no. 4, pp. 1060–1064, 1996.
[180]  N. Leclerc, F. Ribera, J. Zoll et al., “Selective changes in mitochondria respiratory properties in oxidative or glycolytic muscle fibers isolated from G93AhumanSOD1 transgenic mice,” Neuromuscular Disorders, vol. 11, no. 8, pp. 722–727, 2001.
[181]  P. Klivenyi, R. J. Ferrante, R. T. Matthews, et al., “Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis,” Nature Medicine, vol. 5, pp. 347–350, 1990.
[182]  G. J. Groeneveld, J. H. Veldink, I. van der Tweel et al., “A randomized sequential trial of creatine in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 53, no. 4, pp. 437–445, 2003.
[183]  T. Shimizu, H. Hayashi, and H. Tanabe, “Energy metabolism of ALS patients under mechanical ventilation and tube feeding,” Clinical Neurology, vol. 31, pp. 255–259, 1991.
[184]  B. M. Morrison, W. G. Janssen, J. W. Gordon, et al., “Time course of neuropathology in the spinal cord of G86R superoxide dismutase transgenic mice,” The Journal of Comparative Neurology, vol. 391, pp. 64–77, 1998.
[185]  J. C. Desport, P. M. Preux, C. T. Truong, et al., “Nutritional status is a prognostic factor for survival in ALS patients,” Neurology, vol. 53, pp. 1059–1063, 1999.
[186]  A. Cameron and J. Rosenfeld, “Nutritional issues and supplements in amyotrophic lateral sclerosis and other neurodegenerative disorders,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 5, no. 6, pp. 631–643, 2002.
[187]  M. Platten, P. P. Ho, S. Youssef et al., “Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite,” Science, vol. 310, no. 5749, pp. 850–855, 2005.
[188]  H. Q. Wu, F. G. Salituro, and R. Schwarcz, “Enzyme-catalyzed production of the neuroprotective NMDA receptor antagonist 7-chlorokynurenic acid in the rat brain in vivo,” European Journal of Pharmacology, vol. 319, no. 1, pp. 13–20, 1997.
[189]  H. Q. Wu, S. C. Lee, and R. Schwarcz, “Systemic administration of 4-chlorokynurenine prevents quinolinate neurotoxicity in the rat hippocampus,” European Journal of Pharmacology, vol. 390, no. 3, pp. 267–274, 2000.
[190]  C. Polman, F. Barkhof, M. Sandberg-Wollheim, A. Linde, O. Nordle, and T. Nederman, “Treatment with laquinimod reduces development of active MRI lesions in relapsing MS,” Neurology, vol. 64, no. 6, pp. 987–991, 2005.
[191]  A. Chiarugi and F. Moroni, “Quinolinic acid formation in immune-activated mice: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(-3-nitrophenyl) thiazol-2yl]-benzenesulfonamide (Ro 61-8048), two potent and selective inhibitors of kynurenine hydroxylase,” Neuropharmacology, vol. 38, no. 8, pp. 1225–1233, 1999.
[192]  S. R?ver, A. M. Cesura, P. Huguenin, R. Kettler, and A. Szente, “Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase,” Journal of Medicinal Chemistry, vol. 40, no. 26, pp. 4378–4385, 1997.
[193]  A. Chiarugi, A. Cozzi, C. Ballerini, L. Massacesi, and F. Moroni, “Kynurenine 3-mono-oxygenase activity and neurotoxic kynurenine metabolites increase in the spinal cord of rats with experimental allergic encephalomyelitis,” Neuroscience, vol. 102, no. 3, pp. 687–695, 2001.
[194]  R. A. Cherny, C. S. Atwood, M. E. Xilinas et al., “Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice,” Neuron, vol. 30, no. 3, pp. 665–676, 2001.
[195]  Y. Chen, V. Meininger, and G. J. Guillemin, “Recent advances in the treatment of amyotrophic lateral sclerosis. Emphasis on kynurenine pathway inhibitors,” Central Nervous System Agents in Medicinal Chemistry, vol. 9, no. 1, pp. 32–39, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413