全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Association between a Tetranucleotide Repeat Polymorphism of SPAG16 Gene and Cataract in Male Children

DOI: 10.1155/2013/810395

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. Studies involving genotyping of STR markers at 2q34 have repeatedly found the region to host the disease haplotype for pediatric cataract. Present study investigated the association of D2S2944 marker, in sperm associated antigen 16 (SPAG16) gene and rs2289917 polymorphism, in γ-crystallin B gene, with childhood cataract. Methods. 97 pediatric cataract cases and 110 children with no ocular defects were examined for tetranucleotide repeat marker/SNP using PCR-SSLP/RFLP techniques. Polymorphisms were assessed for association using contingency tables and linkage disequilibrium among alleles of the markers was estimated. Energy-optimization program predicted the secondary structure models of repeats of D2S2944. Results. Seven alleles of D2S2944, with 9–15 “GATA” repeats, were observed. Frequency of the longer allele of D2S2944, ≥(GATA)13 repeats, was 0.73 in cases and 0.56 in controls ( ). Male children bearing ≥(GATA)13 repeats showed >3-fold higher risk for cataract (CI95% = 1.43–7.00, , ) as compared to female children ( , CI95% = 0.49–2.92, ). Cases with haplotype—≥(GATA)13 of D2S2944 and “C” allele rs2289917—have a higher risk for pediatric cataract ( , CI95% = 1.595~5.463, ). >(GATA)13 repeats formed energetically more favorable stem-loop structure. Conclusion. Intragenic microsatellite repeat expansion in SPAG16 gene increases predisposition to pediatric cataract by probably interfering posttranscriptional events and affecting the expression of adjacent lens transparency gene/s in a gender bias manner. 1. Introduction Cataract is a major cause of treatable childhood blindness, with a prevalence of around 5 to 15 cases per 10,000 children in India [1]. Cataract in children is particularly serious because it has the potential for inhibiting visual development, resulting in permanent blindness and disability. Inherited cataracts represent 8–25% of infantile cataract cases [2]. Understanding the genetics of cataract will not only lead to better treatment approaches but also open avenues for effective counseling. Most inherited cataracts mapped on to chromosome 2 are associated with a subgroup of genes, namely, gamma-crystallins (CRYG) present at 2q33–35, encoding proteins important for maintenance of lens transparency and homeostasis [3]. The chromosomal region from 198?Mb to 220?Mb on chromosome 2q has been repeatedly found to host the disease haplotype for pediatric cataract [4]. Infact Cat-Map database summary shows that major portion of mutations/variations observed to be associated with cataracts in this region have been reported in Asians

References

[1]  L. Dandona, C. E. Gilbert, J. S. Rahi, and G. N. Rao, “Planning to reduce childhood blindness in India,” Indian Journal of Ophthalmology, vol. 46, no. 2, pp. 117–122, 1998.
[2]  S. Merin, “Inherited cataracts,” in Inherited Eye Diseases: Diagnosis and Clinical Management, pp. 86–88, Marcel Decker, New York, NY, USA, 1991.
[3]  A. Shiels, T. M. Bennett, and J. F. Hejtmancik, “Cat-Map: putting cataract on the map,” Molecular Vision, vol. 16, pp. 2007–2015, 2010.
[4]  S. Mehra, S. Kapur, and A. R. Vasavada, “Polymorphism of the CRYGA and CRYGB genes among Indians patients with pediatric cataract,” Journal of Postgraduate Medicine, vol. 57, no. 3, pp. 201–205, 2011.
[5]  E. Nandrot, C. Slingsby, A. Basak et al., “Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts,” Journal of Medical Genetics, vol. 40, no. 4, pp. 262–267, 2003.
[6]  S. K. Iyengar, B. E. K. Klein, R. Klein et al., “Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 40, pp. 14485–14490, 2004.
[7]  D. S. Mackay, U. P. Andley, and A. Shiels, “A missense mutation in the γD crystallin gene (CRYGD) associated with autosomal dominant “coral-like” cataract linked to chromosome 2q,” Molecular Vision, vol. 10, pp. 155–162, 2004.
[8]  E. I. Rogaev, E. A. Rogaeva, G. I. Korovaitseva et al., “Linkage of polymorphic congenital cataract to the γ-crystallin gene locus on human chromosome 2q33–35,” Human Molecular Genetics, vol. 5, no. 5, pp. 699–703, 1996.
[9]  D. A. Stephan, E. Gillanders, D. Vanderveen et al., “Progressive juvenile-onset punctate cataracts caused by mutation of the γD-crystallin gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 1008–1012, 1999.
[10]  X. Shentu, K. Yao, W. Xu, S. Zheng, S. Hu, and X. Gong, “Special fasciculiform cataract caused by a mutation in the γD-crystallin gene,” Molecular Vision, vol. 10, pp. 233–239, 2004.
[11]  F. Li, S. Wang, C. Gao et al., “Mutation G61C in the CRYGD gene causing autosomal dominant congenital coralliform cataracts,” Molecular Vision, vol. 14, pp. 378–386, 2008.
[12]  L. Y. Zhang, B. Gong, J. P. Tong et al., “A novel γD-crystallin mutation causes mild changes in protein properties but leads to congenital coralliform cataract,” Molecular Vision, vol. 15, pp. 1521–1529, 2009.
[13]  G. Van Buggenhout, C. Van Ravenswaaij-Arts, N. Mc Maas et al., “The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients,” European Journal of Medical Genetics, vol. 48, no. 3, pp. 276–289, 2005.
[14]  T. M. Chen, P. L. Kuo, C. H. Hsu et al., “Microsatellite in the 3' untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression,” Human Mutation, vol. 28, no. 1, p. 98, 2007.
[15]  D. R. Nagarkatti-Gude, R. Jaimez, S. C. Henderson, M. E. Teves, Z. Zhang, and J. F. Strauss, “Spag16, an axonemal central apparatus gene, encodes a male germ cell nuclear speckle protein that regulates SPAG16 mRNA expression,” PLoS ONE, vol. 6, no. 5, Article ID e20625, 2011.
[16]  Z. Zhang, M. A. Zariwala, M. M. Mahadevan et al., “A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme,” Biology of Reproduction, vol. 77, no. 5, pp. 864–871, 2007.
[17]  Z. Zhang, X. Shen, B. H. Jones, B. Xu, J. C. Herr, and Strauss III, “Phosphorylation of mouse sperm axoneme central apparatus protein SPAG16L by a testis-specific kinase, TSSK2,” Biology of Reproduction, vol. 79, no. 1, pp. 75–83, 2008.
[18]  Z. Zhibing, S. Xuening, D. R. Gude et al., “MEIG1 is essential for spermiogenesis in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 40, pp. 17055–17060, 2009.
[19]  S. Merin, Congenital Cataracts, Little Brown, Boston, Mass, USA, 1974.
[20]  S. Kapur, S. Mehra, D. Gajjar et al., “Analysis of single nucleotide polymorphisms of CRYGA and CRYGB genes in control population of western Indian origin,” Indian Journal of Ophthalmology, vol. 57, no. 3, pp. 197–201, 2009.
[21]  S. Mehra, S. Kapur, S. Mittal, and P. K. Sehgal, “Common genetic link between metabolic syndrome components and senile cataract,” Free Radical Research, vol. 46, no. 2, pp. 133–1140, 2012.
[22]  Sun Wei Guo and E. A. Thompson, “Performing the exact test of Hardy-Weinberg proportion for multiple alleles,” Biometrics, vol. 48, no. 2, pp. 361–372, 1992.
[23]  R. R. Devi, W. Yao, P. Vijayalakshmi, Y. V. Sergeev, P. Sundaresan, and J. F. Hejtmancik, “Crystallin gene mutations in Indian families with inherited pediatric cataract,” Molecular Vision, vol. 14, pp. 1157–1170, 2008.
[24]  K. P. Burdon, M. G. Wirth, D. A. Mackey et al., “Investigation of crystallin genes in familial cataract, and report of two disease associated mutations,” British Journal of Ophthalmology, vol. 88, no. 1, pp. 79–83, 2004.
[25]  L. Hansen, A. Mikkelsen, P. Nürnberg et al., “Comprehensive mutational screening in a cohort of danish families with hereditary congenital cataract,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3291–3303, 2009.
[26]  A. L. Beem, E. J. C. De Geus, J. J. Hottenga et al., “Combined linkage and association analyses of the 124-bp allele of marker D2S2944 with anxiety, depression, neuroticism and major depression,” Behavior Genetics, vol. 36, no. 1, pp. 127–136, 2006.
[27]  M. Etminan, F. S. Mikelberg, and J. M. Brophy, “Selective serotonin reuptake inhibitors and the risk of cataracts. A Nested Case-Control Study,” Ophthalmology, vol. 117, no. 6, pp. 1251–1255, 2010.
[28]  M. Kapoor, S. Kapur, and L. C. Dhaka, “D2S2944 marker: a common marker for the obesity-depression associations,” Journal of Mental Health and Human Behaviour, vol. 15, pp. 24–30, 2010.
[29]  B. S. Maher, H. B. Hughes III, W. N. Zubenko, and G. S. Zubenko, “Genetic linkage of region containing the CREB1 gene to depressive disorders in families with recurrent, early-onset, major depression: a re-analysis and confirmation of sex-specific effect,” American Journal of Medical Genetics B, vol. 153, no. 1, pp. 10–16, 2010.
[30]  S. M. Mirkin, “Expandable DNA repeats and human disease,” Nature, vol. 447, no. 7147, pp. 932–940, 2007.
[31]  Z. Zhang, I. Kostetskii, S. B. Moss et al., “Haploinsufficiency for the murine orthologue of Chlamydomonas PF20 disrupts spermatogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 12946–12951, 2004.
[32]  J. K. Sun, T. Iwata, J. S. Zigler Jr., and D. A. Carper, “Differential gene expression in male and female rat lenses undergoing cataract induction by transforming growth factor-β (TGF-β),” Experimental Eye Research, vol. 70, no. 2, pp. 169–181, 2000.
[33]  K. Sili?a, P. Zayakin, Z. Kalni?a et al., “Sperm-associated antigens as targets for cancer immunotherapy: expression pattern and humoral immune response in cancer patients,” Journal of Immunotherapy, vol. 34, no. 1, pp. 28–44, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413