全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of Flowering Pattern in Setaria viridis, a Proposed Model Species for C4 Photosynthesis Research

DOI: 10.1155/2013/592429

Full-Text   Cite this paper   Add to My Lib

Abstract:

Green foxtail millet (Setaria viridis) has NADP-ME type of C4 photosynthesis. Because of its short life cycle, small genome size of ~515?Mb, small plant stature, high number of seed set, simple growth requirements, and wide adaptability, this diploid ( ) weed is proposed to be a model species for the study of C4 photosynthesis. It is also a representative of bioenergy grasses and a model for genetic study of invasive weeds. Despite having all traits of a model species, it is difficult to cross-pollinate because its flowering behavior is not well studied. We used time lapse digital recording to study the flowering time and pattern along a single panicle. We found that flowering in Setaria was triggered by the darkness of the night and when the temperature was lower than 35°C. The anthesis of all the spikelets in a panicle took up-to three nights flowering from 9:30 pm to 10:00 am in the morning. Each spikelet has three phases of anthesis during which pollination occurs. A spikelet remains open for less than three hours. The pollination time for each spikelet is less than 60 minutes. Information from this study will facilitate the geneticists and plant breeders to plan for efficient crossing of Setaria. 1. Introduction A common weed, green foxtail millet (Setaria viridis (L.) P. Beauv.), which belongs to family Poaceae, has gained the attention of plant scientists due mainly to its inherent C4 traits. Brutnell et al., (2010) proposed to make this weed a model species for C4 photosynthesis research [1], and there is a progressive support and acceptance to the proposal [2, 3]. About 125 species are identified under genus Setaria [4], and S. viridis is considered the ancestral stock of this genus. Allozyme assay has shown that foxtail millet (S. italica) was the domesticated form of the S. viridis [5]. S. italica was grown as early as 6,000 years ago and was one of the oldest cultivated cereals of China [6]. Today, several species of millet belonging to the family Poaceae are widely cultivated. The major cultivated species of millet include: Pennisetum glaucum (pearl millet), Setaria italica (foxtail millet), Panicum miliaceum (proso millet), and Eleusine coracana (finger millet) [7]. The green foxtail millet is an invasive weed because of its short life span and its ability to produce seeds with long life [8]. Recently, it was reported that S. viridis also showed repeated evolution to herbicide resistance [9]. This finding opens a new dimension to uncover the genetic basis of the evolution of herbicide resistance. A model plant species should have rapid

References

[1]  T. P. Brutnell, L. Wang, K. Swartwood et al., “Setaria viridis: a model for C4 photosynthesis,” The Plant Cell, vol. 22, no. 8, pp. 2537–2544, 2010.
[2]  J. Xu, Y. Li, X. Ma et al., “Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research,” Plant Molecular Biology, vol. 83, no. 1-2, pp. 77–87, 2013.
[3]  M. Mauro-Herrera, X. Wang, H. Barbier, T. P. Brutnell, K. M. Devos, and A. N. Doust, “Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae),” G3: Genes, Genomes, Genetics, vol. 3, pp. 283–295, 2013.
[4]  H. Darmency and J. Dekker, “Setaria,” in Wild Crop Relatives: Genomic and Breeding Resources, C. Kole, Ed., pp. 275–296, 2011.
[5]  R.-L. Wang, J. F. Wendel, and J. H. Dekker, “Weedy adaptation in Setaria spp. I. Isozyme analysis of genetic diversity and population genetic structure in Setaria viridis,” American Journal of Botany, vol. 82, no. 3, pp. 308–317, 1995.
[6]  K. C. Cheng, “Radio carbon dates from China: some initial interpretations,” Current Anthropology, vol. 14, pp. 525–528, 1973.
[7]  D. D. Baltensperger, “Progress with Proso, Pearl and other millets,” in Trends in New Crop and New Uses, J. Janick and A. Whipkey, Eds., ASHS Press, Alexandria, VA, USA, 2002.
[8]  J. Dekker, “The foxtail (Setaria) species-group,” Weed Science, vol. 51, no. 5, pp. 641–656, 2003.
[9]  J. L. Bennetzen, J. Schmutz, H. Wang, et al., “Reference genome sequence of the model plant Setaria,” Nature Biotechnology, vol. 30, no. 6, pp. 555–564, 2012.
[10]  W. G. van Doorn and U. van Meeteren, “Flower opening and closure: a review,” Journal of Experimental Botany, vol. 54, no. 389, pp. 1801–1812, 2003.
[11]  P. Li and T. P. Brutnell, “Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses,” Journal of Experimental Botany, vol. 62, no. 9, pp. 3031–3037, 2011.
[12]  G. Rizal, S. Karki, V. Thakur et al., “Towards a C4 rice,” Asian Journal of Cell Biology, vol. 7, no. 2, pp. 13–31, 2012.
[13]  D. R. Manthey and J. D. Nalewaja, “Germination of two foxtail (Setaria) species,” Weed Technology, vol. 1, pp. 302–304, 1987.
[14]  C. J. Swanton, J. Z. Huang, W. Deen, M. Tollenaar, A. Shrestha, and H. Rahimian, “Effects of temperature and photoperiod on Setaria viridis,” Weed Science, vol. 47, no. 4, pp. 446–453, 1999.
[15]  I. Till-Bottraud, X. Reboud, P. Brabant et al., “Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops,” Theoretical and Applied Genetics, vol. 83, no. 8, pp. 940–946, 1992.
[16]  M. M. Schreiber and L. R. Oliver, “Two new varieties of Setaria viridis,” Weed Science, vol. 19, pp. 424–427, 1971.
[17]  T.-L. Ashman and D. J. Schoen, “How long should flowers live?” Nature, vol. 371, no. 6500, pp. 788–791, 1994.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413