全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Responses of Green Leaves and Green Pseudobulbs of CAM Orchid Cattleya laeliocattleya Aloha Case to Drought Stress

DOI: 10.1155/2013/710539

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examined the responses of green leaves (GL) and green pseudobulbs (GPSB) of CAM orchid Cattleya laeliocattleya Aloha Case to drought stress. After being subjected to drought stress, the decrease in water content (WC) was much greater in GPSB than in GL, indicating that GPSB facilitated a slow reduction in the WC of GL. This finding was further supported by the result of relative water content (RWC) of GL, which started to decrease only after 3 weeks of drought stress. Decreases of midday ratios of GL occurred in all plants. However, the degrees of decrease were much greater in drought-stressed GL than in well-watered GL. Reduced ratio (<0.8) at early morning was observed in drought-stressed GL after 3 weeks of treatments. Decreases in total chlorophyll (Chl) content, electron transport rate (ETR), photochemical quenching, qP, and nonphotochemical quenching, qN, were severer in GPSB than in GL after drought treatment. CAM acidity was significantly lower in both GL and GPSB after 2 weeks of drought treatment compared to well-watered plants. However, decrease of CAM acidity was smaller in GL than in GPSB. These results suggest that both GL and GPSB of CAM orchid Cattleya plantswere susceptible to drought stress. 1. Introduction Epiphytic orchids found in tropical environments are directly or indirectly exposed to natural air currents and solar radiation and receive only intermittent rains. In addition to coping with rapid changes in natural air current and light intensity, there is also the need for epiphytic orchids to adapt to periodic drought [1]. Many epiphytic orchids develop morphological features to conserve and/or store water to cope with drought. A morphological feature includes the presence of swollen stems called pseudobulbs that serve as a reserve for water and carbohydrates [2]. Among the many abiotic factors involved in the survival of epiphytes, water availability is probably the most important environmental factor limiting growth and survival of epiphytes [3]. Thus, tolerance to water deficit is a decisive factor in their survival. The presence of the pseudobulb may facilitate a slow reduction in the leaf water content and decline in water potential during a period of drought [1, 4, 5]. The pseudobulb is characterized by the presence of very thick cuticle, absence of stomata, and the abundance of water-storing cells [6]. This makes the pseudobulb an integral organ in the survival and growth of orchids [7, 8]. This is even more so for green pseudobulbs (GPSB) which can photosynthesise and hence contribute positively to carbon

References

[1]  G. C. Stancato, P. Mazzafera, and M. S. Buckeridge, “Effect of a drought period on the mobilisation of non-structural carbohydrates, photosynthetic efficiency and water status in an epiphytic orchid,” Plant Physiology and Biochemistry, vol. 39, no. 11, pp. 1009–1016, 2001.
[2]  C. J. Goh and M. Kluge, “Gas exchange and water relations in epiphytic orchids,” in VAscular Plants as Epiphytes, Evolution and Ecophysiology, U. Lüttge, Ed., pp. 139–166, Springer, Heidelberg, Germany, 1989.
[3]  G. Zotz and M. T. Tyree, “Water stress in the epiphytic orchid Dimerandra emarginata (G. Meyer) hoehne,” Oecologia, vol. 107, no. 2, pp. 151–159, 1996.
[4]  J. B. Ertelt, “Horticultural aspects of growing and displaying a wide variety of epiphytes,” Selbyana, vol. 13, pp. 95–98, 1992.
[5]  X. N. Zheng, Z. Q. Wen, and C. S. Hew, “Response of Cymbidium sinense to drought stress,” Journal of Hoticultural Scienc, vol. 67, pp. 295–299, 1992.
[6]  J. Arditti, “Fundamentals of orchid biology,” Fundamentals of Orchid Biology, 1992.
[7]  C. K. Y. Ng and C. S. Hew, “Orchid pseudobulbs “False” bulbs with a genuine importance in orchid growth and survival!,” Scientia Horticulturae, vol. 83, no. 3-4, pp. 165–172, 2000.
[8]  C. S. Hew and J. W. H. Yong, The Physiology of Tropical Orchids in Relation to the Industry, World Scientific Publishing, Singapore, 2nd edition, 2004.
[9]  R. Sinclair, “Water relations of tropical epiphytes.I: relationships between stomatal resistance, relative water content and the components of water potential,” Journal of Experimental Botany, vol. 34, no. 12, pp. 1652–1663, 1983.
[10]  R. Sinclair, “Water relations of tropical epiphytes.II: performance during droughting,” Journal of Experimental Botany, vol. 34, no. 12, pp. 1664–1675, 1983.
[11]  S. A. Anjum, X.-Y. Xie, L.-C. Wang, M. F. Saleem, C. Man, and W. Lei, “Morphological, physiological and biochemical responses of plants to drought stress,” African Journal of Agricultural Research, vol. 6, no. 9, pp. 2026–2032, 2011.
[12]  S. T. Cockerham and B. Leinauer, Turfgrass Water Conservation, University of California, Agriculture and Natural Resources, Davis, Calif, USA, 2011.
[13]  J. He, B. H. G. Tan, and L. Qin, “Source-to-sink relationship between green leaves and green pseudobulbs of C3 orchid in regulation of photosynthesis,” Photosynthetica, vol. 49, no. 2, pp. 209–218, 2011.
[14]  K. Winter, G. S. Meier, and M. M. Caldwell, “Respiratory CO2 as carbon source for nocturnal acid synthesis at high temperatures in three species exhibiting crassulacean acid metabolism,” Plant Physiology, vol. 81, pp. 390–394, 1986.
[15]  L. Berg, Introductory Botany: Plants, People, and the Environment, Thomson Brooks/Cole, Belmont, Calif, USA, 2nd edition, 2008.
[16]  A. R. Wellburn, “The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution,” Journal of Plant Physiology, vol. 144, no. 3, pp. 307–313, 1994.
[17]  S. B. Powles, “Photoinhibition of photosynthesis induced by visible light,” Annual Review of Plant Physiology, vol. 35, pp. 15–44, 1984.
[18]  F. Ghetti, G. Checcucci, and J. F. Bornman, Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models, Springer, Amsterdam, The Netherlands, 2001.
[19]  C. B. Osmond, “What is photoinhibition? Some insights from comparisons of sun and shade plants,” in Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field, N. R. Baker and J. R. Bowyer, Eds., pp. 1–24, BIOS, Oxford, UK, 1994.
[20]  D. O. Hall and K. K. Rao, Photosynthesis, Cambridge University Press, UK, 6th edition, 2001.
[21]  G. H. Krause and S. Somersalo, “Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition, cold acclimation and freezing stress,” Philosophical Transactions of the Royal Society B, vol. 323, pp. 281–293, 1989.
[22]  B. Venkateswarlu, A. K. Shanker, C. Shanker, and M. Maheswari, Crop Stress and Its Management: Perspectives and Strategies, Springer, Amsterdam, The Netherlands, 2012.
[23]  I. A. Hassan, “Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L.,” Photosynthetica, vol. 44, no. 2, pp. 312–315, 2006.
[24]  F. Paknejad, M. Nasri, H. R. T. Moghadam, H. Zahedi, and M. J. Alahmadi, “Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars,” Journal of Biological Sciences, vol. 7, no. 6, pp. 841–847, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413