全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors

DOI: 10.1155/2013/965212

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. In the last decades, thyroid cancer incidence has continuously and sharply increased all over the world. This review analyzes the possible reasons of this increase. Summary. Many experts believe that the increased incidence of thyroid cancer is apparent, because of the increased detection of small cancers in the preclinical stage. However, a true increase is also possible, as suggested by the observation that large tumors have also increased and gender differences and birth cohort effects are present. Moreover, thyroid cancer mortality, in spite of earlier diagnosis and better treatment, has not decreased but is rather increasing. Therefore, some environmental carcinogens in the industrialized lifestyle may have specifically affected the thyroid. Among potential carcinogens, the increased exposure to medical radiations is the most likely risk factor. Other factors specific for the thyroid like increased iodine intake and increased prevalence of chronic autoimmune thyroiditis cannot be excluded, while other factors like the increasing prevalence of obesity are not specific for the thyroid. Conclusions. The increased incidence of thyroid cancer is most likely due to a combination of an apparent increase due to more sensitive diagnostic procedures and of a true increase, a possible consequence of increased population exposure to radiation and to other still unrecognized carcinogens. 1. Introduction Thyroid cancer is the most common endocrine cancer (approximately 1.0%–1.5% of all new cancers diagnosed each year in the USA) [1], and its incidence has continuously increased in the last three decades all over the world. This trend is present on every continent (Table 1) except Africa [2], where detection is possibly insufficient. The increasing incidence is indicated by the annual percent change (APC) that in the USA was 2.4% from 1980 to 1997 and 6.6% from 1997 to 2009 (both genders) (Cancer of The Thyroid-SEER Stat Fact Sheets, available at http://seer.cancer.gov/statfacts/html/thyro.html accessed on December 10, 2012). Based on recent data, thyroid cancer is the fifth most common cancer in women [3], and in Italy, it is the second most frequent cancer in women below 45 years of age [4]. Only in few countries (Norvay, Sweden) thyroid cancer incidence is decreased [2]. Table 1: Increase of thyroid cancer incidence rate in different countries. Genetic factors, environmental influences, and access to medical care can easily explain the high variability (up to nearly tenfold) in the thyroid cancer incidence by geographic area and ethnicity. Recent

References

[1]  M. P. Curado, B. Edwards, H. R. Shin et al., Cancer Incidence in Five Continents, vol. 9 of IARC Scientific Publications, No. 160, IARC, Lyon, France, 2007.
[2]  B. A. Kilfoy, T. Zheng, T. R. Holford et al., “International patterns and trends in thyroid cancer incidence, 1973–2002,” Cancer Causes and Control, vol. 20, no. 5, pp. 525–531, 2009.
[3]  A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[4]  L. dal Maso, M. Lise, P. Zambon et al., “Incidence of thyroid cancer in Italy, 1991–2005: time trends and age-period-cohort effects,” Annals of Oncology, vol. 22, no. 4, pp. 957–963, 2011.
[5]  B. Aschebrook-Kilfoy, E. L. Kaplan, B. C. Chiu, P. Angelos, and R. H. Grogan, “The acceleration in papillary thyroid cancer incidence rates is similar among racial and ethnic groups in the United States,” Annals of Surgical Oncology, 2013.
[6]  L. Enewold, K. Zhu, E. Ron et al., “Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 3, pp. 784–791, 2009.
[7]  W. D. T. Kent, S. F. Hall, P. A. Isotalo, R. L. Houlden, R. L. George, and P. A. Groome, “Increased incidence of differentiated thyroid carcinoma and detection of subclinical disease,” Canadian Medical Association Journal, vol. 177, no. 11, pp. 1357–1361, 2007.
[8]  L. Davies and H. G. Welch, “Increasing incidence of thyroid cancer in the United States, 1973–2002,” Journal of the American Medical Association, vol. 295, no. 18, pp. 2164–2167, 2006.
[9]  S. Grodski, T. Brown, S. Sidhu et al., “Increasing incidence of thyroid cancer is due to increased pathologic detection,” Surgery, vol. 144, no. 6, pp. 1038–1043, 2008.
[10]  A. Rego-Iraeta, L. F. Pérez-Méndez, B. Mantinan, and R. V. Garcia-Mayor, “Time trends for thyroid cancer in northwestern spain: true rise in the incidence of micro and larger forms of papillary thyroid carcinoma,” Thyroid, vol. 19, no. 4, pp. 333–340, 2009.
[11]  E. P. Simard, E. M. Ward, R. Siegel, and A. Jemal, “Cancers with increasing incidence trends in the United States: 1999 through 2008,” CA: A Cancer Journal For Clinicians, vol. 62, no. 2, pp. 118–128, 2012.
[12]  A. Y. Chen, A. Jemal, and E. M. Ward, “Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005,” Cancer, vol. 115, no. 16, pp. 3801–3807, 2009.
[13]  B. Aschebrook-Kilfoy, M. H. Ward, M. M. Sabra, and S. S. Devesa, “Thyroid cancer incidence patterns in the United States by histologic type, 1992–2006,” Thyroid, vol. 21, no. 2, pp. 125–134, 2011.
[14]  H. G. Welch and P. C. Albertsen, “Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005,” Journal of the National Cancer Institute, vol. 101, no. 19, pp. 1325–1329, 2009.
[15]  M. Schlumberger, I. Borget, C. Nascimento, M. Brassard, and S. Leboulleux, “Treatment and follow-up of low-risk patients with thyroid cancer,” Nature Reviews Endocrinology, vol. 7, no. 10, pp. 625–628, 2011.
[16]  Y. Ito and A. Miyauchi, “Is surgery necessary for papillary thyroid microcarcinomas?” Nature Reviews Endocrinology, vol. 8, no. 1, p. 9, 2012.
[17]  E. K. Alexander and P. R. Larsen, “Radioiodine for thyroid cancer—is less more?” The New England Journal of Medicine, vol. 366, no. 18, pp. 1732–1733, 2012.
[18]  M. Schlumberger, B. Catargi, I. Borget et al., “Strategies of radioiodine ablation in patients with low-risk thyroid cancer,” The New England Journal of Medicine, vol. 366, no. 18, pp. 1663–1673, 2012.
[19]  G. Pellegriti, C. Scollo, G. Lumera, C. Regalbuto, R. Vigneri, and A. Belfiore, “Clinical behavior and outcome of papillary thyroid cancers smaller than 1.5?cm in diameter: study of 299 cases,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 8, pp. 3713–3720, 2004.
[20]  B. Aschebrook-Kilfoy, R. Grogan, M. Ward, E. Kaplan, and S. Devesa, “Follicular thyroid cancer incidence patterns in the United States, 1980–2009,” Thyroid, 2013.
[21]  E. L. Mazzaferri, “Management of a solitary thyroid nodule,” The New England Journal of Medicine, vol. 328, no. 8, pp. 553–559, 1993.
[22]  I. L. Nilsson, F. Arnberg, J. Zedenius, and A. Sundin, “Thyroid incidentaloma detected by fluorodeoxyglucose positron emission tomography/computed tomography: practical management algorithm,” World Journal of Surgery, vol. 35, no. 12, pp. 2691–2697, 2011.
[23]  M. Yun, T. W. Noh, A. Cho et al., “Visually discernible [18F]fluorodeoxyglucose uptake in papillary thyroid microcarcinoma: a potential new risk factor,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3182–3188, 2010.
[24]  B. L. Sprague, S. Warren Andersen, and A. Trentham-Dietz, “Thyroid cancer incidence and socioeconomic indicators of health care access,” Cancer Causes and Control, vol. 19, no. 6, pp. 585–593, 2008.
[25]  H. R. Harach, K. O. Franssila, and V. M. Wasenius, “Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study,” Cancer, vol. 56, no. 3, pp. 531–538, 1985.
[26]  E. L. Mazzaferri, “Managing thyroid microcarcinomas,” Yonsei Medical Journal, vol. 53, no. 1, pp. 1–14, 2012.
[27]  F. A. Haggar, D. B. Preen, G. Pereira, C. D. Holman, and K. Einarsdottir, “Cancer incidence and mortality trends in Australian adolescents and young adults, 1982–2007,” BMC Cancer, vol. 12, no. 1, p. 151, 2012.
[28]  S. Liu, R. Semenciw, A. M. Ugnat, and Y. Mao, “Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects,” British Journal of Cancer, vol. 85, no. 9, pp. 1335–1339, 2001.
[29]  L. F. Ellison and K. Wilkins, “Canadian trends in cancer prevalence,” Health Reports, vol. 23, no. 1, pp. 7–16, 2012.
[30]  Y. Wang and W. Wang, “Increasing incidence of thyroid cancer in shanghai, China, 1983–2007,” Asia-Pacific Journal of Public Health, 2012.
[31]  M. Colonna, A. V. Guizard, C. Schvartz et al., “A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983–2000),” European Journal of Cancer, vol. 43, no. 5, pp. 891–900, 2007.
[32]  A. Mathur, W. Moses, R. Rahbari et al., “Higher rate of BRAF mutation in papillary thyroid cancer over time: a single-institution study,” Cancer, vol. 117, no. 19, pp. 4390–4395, 2011.
[33]  C. Romei, L. Fugazzola, E. Puxeddu et al., “Modifications in the papillary thyroid cancer gene profile over the last 15 years,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 9, pp. E1758–E1765, 2012.
[34]  C. Zhu, T. Zheng, B. A. Kilfoy et al., “A birth cohort analysis of the incidence of papillary thyroid cancer in the united states, 1973–2004,” Thyroid, vol. 19, no. 10, pp. 1061–1066, 2009.
[35]  F. A. Mettler Jr., M. Bhargavan, B. R. Thomadsen et al., “Nuclear Medicine Exposure in the United States, 2005–2007: preliminary results,” Seminars in Nuclear Medicine, vol. 38, no. 5, pp. 384–391, 2008.
[36]  F. A. Mettler Jr., P. W. Wiest, J. A. Locken, and C. A. Kelsey, “CT scanning: patterns of use and dose,” Journal of Radiological Protection, vol. 20, no. 4, pp. 353–359, 2000.
[37]  O. W. Linton and F. A. Mettler, “National conference on dose reduction in CT, with an emphasis on pediatric patients,” American Journal of Roentgenology, vol. 181, no. 2, pp. 321–329, 2003.
[38]  S. R. Baker and W. A. Bhatti, “The thyroid cancer epidemic: is it the dark side of the CT revolution?” European Journal of Radiology, vol. 60, no. 1, pp. 67–69, 2006.
[39]  D. Williams, “Radiation carcinogenesis: lessons from Chernobyl,” Oncogene, vol. 27, supplement 2, pp. S9–S18, 2008.
[40]  M. S. Pearce, J. A. Salotti, M. P. Little et al., “Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study,” The Lancet, vol. 380, no. 9840, pp. 499–4505, 2012.
[41]  M. Mazonakis, A. Tzedakis, J. Damilakis, and N. Gourtsoyiannis, “Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction?” European Radiology, vol. 17, no. 5, pp. 1352–1357, 2007.
[42]  A. Berrington de González, M. Mahesh, K. P. Kim et al., “Projected cancer risks from computed tomographic scans performed in the United States in 2007,” Archives of Internal Medicine, vol. 169, no. 22, pp. 2071–2077, 2009.
[43]  E. Ron, J. H. Lubin, R. E. Shore et al., “Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies,” Radiation Research, vol. 141, no. 3, pp. 259–277, 1995.
[44]  D. B. Richardson, “Exposure to ionizing radiation in adulthood and thyroid cancer incidence,” Epidemiology, vol. 20, no. 2, pp. 181–187, 2009.
[45]  A. Memon, S. Godward, D. Williams, I. Siddique, and K. Al-Saleh, “Dental x-rays and the risk of thyroid cancer: a case-control study,” Acta Oncologica, vol. 49, no. 4, pp. 447–453, 2010.
[46]  E. Ron, “Cancer risks from medical radiation,” Health Physics, vol. 85, no. 1, pp. 47–59, 2003.
[47]  J. A. Franklyn, P. Maisonneuve, M. C. Sheppard, J. Betteridge, and P. Boyle, “Mortality after the treatment of hyperthyroidism with radioactive iodine,” The New England Journal of Medicine, vol. 338, no. 11, pp. 712–718, 1998.
[48]  S. Metso, A. Auvinen, H. Huhtala, J. Salmi, H. Oksala, and P. Jaatinen, “Increased cancer incidence after radioiodine treatment for hyperthyroidism,” Cancer, vol. 109, no. 10, pp. 1972–1979, 2007.
[49]  T. T. Hieu, A. W. Russell, R. Cuneo et al., “Cancer risk after medical exposure to radioactive iodine in benign thyroid diseases: a meta-analysis,” Endocrine-Related Cancer, vol. 19, no. 5, pp. 645–655, 2012.
[50]  P. Black, A. Straaten, and P. Gutjahr, “Secondary thyroid carcinoma after treatment for childhood cancer,” Medical and Pediatric Oncology, vol. 31, no. 2, pp. 91–95, 1998.
[51]  L. dal Maso, C. Bosetti, C. la Vecchia, and S. Franceschi, “Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors,” Cancer Causes and Control, vol. 20, no. 1, pp. 75–86, 2009.
[52]  G. Pellegriti, F. de Vathaire, C. Scollo et al., “Papillary thyroid cancer incidence in the volcanic area of sicily,” Journal of the National Cancer Institute, vol. 101, no. 22, pp. 1575–1583, 2009.
[53]  U. Feldt-Rasmussen, “Iodine and cancer,” Thyroid, vol. 11, no. 5, pp. 483–486, 2001.
[54]  B. Dijkstra, R. S. Prichard, A. Lee et al., “Changing patterns of thyroid carcinoma,” Irish Journal of Medical Science, vol. 176, no. 2, pp. 87–90, 2007.
[55]  H. R. Harach, D. A. Escalante, and A. Onativia, “Thyroid carcinoma and thyroiditis in an endemic goitre region before and after iodine prophylaxis,” Acta Endocrinologica, vol. 108, no. 1, pp. 55–60, 1985.
[56]  H. Guan, M. Ji, R. Bao et al., “Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 5, pp. 1612–1617, 2009.
[57]  E. L. Mazzaferri, “Papillary and follicular thyroid cancer: selective therapy,” Comprehensive Therapy, vol. 7, no. 5, pp. 6–14, 1981.
[58]  M. R. Haymart, D. J. Repplinger, G. E. Leverson et al., “Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 3, pp. 809–814, 2008.
[59]  E. Fiore, T. Rago, M. A. Provenzale et al., “Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: thyroid autonomy may play a protective role,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1251–1260, 2009.
[60]  E. Fiore, T. Rago, M. A. Provenzale et al., “L-thyroxine-treated patients with nodular goiter have lower serum TSH and lower frequency of papillary thyroid cancer: results of a cross-sectional study on 27 914 patients,” Endocrine-Related Cancer, vol. 17, no. 1, pp. 231–239, 2010.
[61]  D. Repplinger, A. Bargren, Y. W. Zhang, J. T. Adler, M. Haymart, and H. Chen, “Is hashimoto's thyroiditis a risk factor for papillary thyroid cancer?” Journal of Surgical Research, vol. 150, no. 1, pp. 49–52, 2008.
[62]  M. Khatami, “Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity,” Cell Biochemistry and Biophysics, vol. 55, no. 2, pp. 55–79, 2009.
[63]  L. Hegedus, “Clinical practice. The thyroid nodule,” The New England Journal of Medicine, vol. 351, no. 17, pp. 1764–1771, 2004.
[64]  E. Marqusee, C. B. Benson, M. C. Frates et al., “Usefulness of ultrasonography in the management of nodular thyroid disease,” Annals of Internal Medicine, vol. 133, no. 9, pp. 696–700, 2000.
[65]  D. S. Cooper, G. M. Doherty, B. R. Haugen et al., “Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer,” Thyroid, vol. 19, no. 11, pp. 1167–1214, 2009.
[66]  E. Papini, R. Guglielmi, A. Bianchini et al., “Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-doppler features,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 5, pp. 1941–1946, 2002.
[67]  M. C. Frates, C. B. Benson, P. M. Doubilet et al., “Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3411–3417, 2006.
[68]  V. Mathai, J. Idikula, A. S. Fenn, and A. Nair, “Do long-standing nodular goitres result in malignancies?” Australian and New Zealand Journal of Surgery, vol. 64, no. 3, pp. 180–182, 1994.
[69]  Y. Erbil, U. Barbaros, A. Salmaslio?lu et al., “Effect of thyroid gland volume in preoperative detection of suspected malignant thyroid nodules in a multinodular goiter,” Archives of Surgery, vol. 143, no. 6, pp. 558–563, 2008.
[70]  J. P. Brito, A. J. Yarur, L. J. Prokop, B. McIver, M. H. Murad, and V. M. Montori, “Prevalence of thyroid cancer in multinodular goiter versus single nodule: a systematic review and meta-analysis,” Thyroid, vol. 23, no. 4, pp. 449–455, 2013.
[71]  P. Vigneri, F. Frasca, L. Sciacca, L. Frittitta, and R. Vigneri, “Obesity and cancer,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 1, pp. 1–7, 2006.
[72]  C. M. Kitahara, E. A. Platz, L. E. Beane Freeman et al., “Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 3, pp. 464–472, 2011.
[73]  M. Almquist, D. Johansen, T. Bjorge et al., “Metabolic factors and risk of thyroid cancer in the Metabolic syndrome and Cancer project (Me-Can),” Cancer Causes Control, vol. 22, no. 5, pp. 743–751, 2011.
[74]  J. N. Rezzónico, M. Rezzónico, E. Pusiol, F. Pitoia, and H. Niepomniszcze, “Increased prevalence of insulin resistance in patients with differentiated thyroid carcinoma,” Metabolic Syndrome and Related Disorders, vol. 7, no. 4, pp. 375–380, 2009.
[75]  T. Mijovi?, J. How, M. Pakdaman et al., “Body mass index in the evaluation of thyroid cancer risk,” Thyroid, vol. 19, no. 5, pp. 467–472, 2009.
[76]  W. J. Mack, S. Preston-Martin, L. Dal Maso et al., “A pooled analysis of case-control studies of thyroid cancer: cigarette smoking and consumption of alcohol, coffee, and tea,” Cancer Causes and Control, vol. 14, no. 8, pp. 773–785, 2003.
[77]  E. Peterson, P. De, and R. Nuttall, “BMI, diet and female reproductive factors as risks for thyroid cancer: a systematic review,” PLoS One, vol. 7, no. 1, Article ID e29177, 2012.
[78]  B. A. Kilfoy, Y. Zhang, Y. Park et al., “Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP diet and health study,” International Journal of Cancer, vol. 129, no. 1, pp. 160–172, 2011.
[79]  M. H. Ward, B. A. Kilfoy, P. J. Weyer, K. E. Anderson, A. R. Folsom, and J. R. Cerhan, “Nitrate intake and the risk of thyroid cancer and thyroid disease,” Epidemiology, vol. 21, no. 3, pp. 389–395, 2010.
[80]  Y. Zhang, G. L. Guo, X. Han et al., “Do polybrominated diphenyl ethers (PBDE) increase the risk of thyroid cancer?” Bioscience Hypotheses, vol. 1, no. 4, pp. 195–199, 2008.
[81]  D. C. Christiani, “Combating environmental causes of cancer,” The New England Journal of Medicine, vol. 364, no. 9, pp. 791–793, 2011.
[82]  E. Arnbjornsson, A. Arnbjornsson, and A. Olafsson, “Thyroid cancer incidence in relation to volcanic activity,” Archives of Environmental Health, vol. 41, no. 1, pp. 36–40, 1986.
[83]  T. M. Kung, W. L. Ng, and J. B. Gibson, “Volcanoes and carcinoma of the thyroid: a possible association,” Archives of Environmental Health, vol. 36, no. 5, pp. 265–267, 1981.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133