全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Disruptions in Liver Function among Cancer Patients and Patients Treated with Tyrosine Kinase Inhibiting Drugs: Comparisons of Two Population-Based Databases

DOI: 10.1155/2013/358285

Full-Text   Cite this paper   Add to My Lib

Abstract:

Liver toxicity is a recognized adverse event associated with small molecule tyrosine kinase inhibitors (TKIs). Electronic Medical Record (EMR) databases offer the most precise data to investigate the rate of liver function test (LFT) elevations; however, they can be limited in sample size and costly to access and analyze. Health insurance claims databases often contain larger samples sizes but may lack key health information. We evaluated the feasibility of utilizing a large claims database to calculate incidence rates (IRs) of LFT elevations among a general cohort of cancer patients and a cohort of patients treated with TKIs by comparing the results to a “gold standard” oncology-specific EMR database. IRs for the TKI cohorts were very similar between the two databases; however, IRs were higher in the EMR database for the cancer cohorts. Possible explanations for these differences include lack of specificity when defining a cancer case, poor capture of laboratory data, or inaccurate assessment of person-time in the insurance claims database. This study suggests that insurance claims data may provide reliable results when investigating liver toxicities associated with oncology drug exposure; however, there are limitations when assessing laboratory outcomes for cohorts defined solely by disease status. 1. Introduction Therapeutic agents that target cancer-specific molecules and signalling pathways have become increasingly integrated into cancer care in recent years. Activation of tyrosine kinases plays a critical role in modulation of growth factor signalling, such as increased cell proliferation and growth, induced antiapoptotic effects, and promotion of angiogenesis and metastasis, and as a result, these protein kinases are key targets for inhibition [1, 2]. Tyrosine kinases can be further classified as receptor kinases and nonreceptor protein kinases [2]. Small-molecule inhibitors of tyrosine kinase target a number of receptors, including BCR-ABLE, c-KIT, PDGFR, EGFR, and FLT-3 [2]. Currently, there are six small molecule TKIs approved by the FDA: imatinib (Gleevec, Glivec), gefitinib (Iressa), erlotinib (Tarceva), dasatinib (Sprycel), lapatinib (Tykerb, Tyverb), and nilotinib (Tasigna). The liver plays a major part in metabolic and excretory functions, including a key role in the metabolism of a number of anticancer cytotoxics and biologic agents, causing drug inactivation or activation of a prodrug. In turn, chemotherapy and biological agents can induce liver injury or dysfunction, which can manifest in abnormal serum liver biochemistry [3].

References

[1]  D. S. Krause and R. A. Van Etten, “Tyrosine kinases as targets for cancer therapy,” The New England Journal of Medicine, vol. 353, no. 2, pp. 172–187, 2005.
[2]  A. Arora and E. M. Scholar, “Role of tyrosine kinase inhibitors in cancer therapy,” Journal of Pharmacology and Experimental Therapeutics, vol. 315, no. 3, pp. 971–979, 2005.
[3]  K. M. Field, C. Dow, and M. Michael, “Part 1: liver function in oncology: biochemistry and beyond,” The Lancet Oncology, vol. 9, no. 11, pp. 1092–1101, 2008.
[4]  Cancer Therapy Evaluation Program, DCTD NND, Common Terminology Criteria for Adverse Events (CTCAE), 2010.
[5]  U. Gatzemeier, A. Pluzanska, A. Szczesna et al., “Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva lung cancer investigation trial,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1545–1552, 2007.
[6]  R. S. Herbst, D. Prager, R. Hermann et al., “TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 23, no. 25, pp. 5892–5899, 2005.
[7]  H. Kantarjian, R. Pasquini, N. Hamerschlak et al., “Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial,” Blood, vol. 109, no. 12, pp. 5143–5150, 2007.
[8]  C. E. Geyer, J. Forster, D. Lindquist et al., “Lapatinib plus capecitabine for HER2-positive advanced breast cancer,” The New England Journal of Medicine, vol. 355, no. 26, pp. 2733–2743, 2006.
[9]  G. Giaccone, R. S. Herbst, C. Manegold et al., “Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial - INTACT 1,” Journal of Clinical Oncology, vol. 22, no. 5, pp. 777–784, 2004.
[10]  M. H. Cohen, R. Dagher, D. J. Griebel et al., “U.S. Food and Drug Administration drug approval summaries: imatinib mesylate, mesna tablets, and zoledronic acid,” Oncologist, vol. 7, no. 5, pp. 393–400, 2002.
[11]  K. Tamura, I. Okamoto, T. Kashii et al., “Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403),” British Journal of Cancer, vol. 98, no. 5, pp. 907–914, 2008.
[12]  United States Department of Health and Human Services, “Guidance for industry, drug-induced liver injury,” Premarketing Clinical Evaluation, 2012.
[13]  S. Setoguchi, D. H. Solomon, R. J. Glynn, E. F. Cook, R. Levin, and S. Schneeweiss, “Agreement of diagnosis and its date for hematologic malignancies and solid tumors between medicare claims and cancer registry data,” Cancer Causes and Control, vol. 18, no. 5, pp. 561–569, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133