全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Regioselective Thiocyanation of Aromatic and Heteroaromatic Compounds Using [2-(Sulfooxy)ethyl]sulfamic Acid as an Efficient, Recyclable Organocatalyst and Novel Difunctional Br?nsted Acid

DOI: 10.1155/2013/723903

Full-Text   Cite this paper   Add to My Lib

Abstract:

A green and simple procedure for the thiocyanation of aromatic and heteroaromatic compounds is described. [2-(Sulfooxy)ethyl]sulfamic acid (SESA) (supported on silica) is easily produced by addition of chlorosulfonic acid to 2-aminoethanol and this catalyst is applied as an efficient, reusable, and heterogeneous catalyst for the thiocyanation of heterocycles, substituted anilines (electron-rich and electron-deficient), and N,N-disubstituted aromatic amines using hydrogen peroxide in the water?:?ethanol as a solvent at room temperature. The catalyst can be easily recovered and reused for five reaction cycles without considerable loss of activity. 1. Introduction The importance of minimizing the impact that chemical processing has on the environment is growing, with an increased appreciation of the need to reduce pollution and depletion of our finite environmental resources. Optimal use of material and energy and an efficient waste management can be recognized as important factors for environmental protection. To realize this goal, in recent years, significant articles have appeared reporting efficient solvent-free reactions by grinding [1–3]. This technique has many advantages such as reduced pollution, low cost, process simplicity, and easier workup. In addition, from the green and environmental acceptability, recently more attention has been paid to the application of inorganic acidic salts in organic synthesis [4, 5]. Solid acids have many advantages such as simplicity in handling, decreased reactor and plant corrosion problems, and more environmentally safe disposal in different chemical processes. Also, wastes and byproducts can be minimized or avoided by using solid acids in developing cleaner synthesis routes. The electrophilic thiocyanation of aromatics and heteroaromatics is an important carbon-heteroatom bond-forming reaction in organic synthesis. Organocatalysis has emerged during the last decade as one of the major issues in the development of catalytic chemical technology [6]. As for conventional catalysis with transition metal complexes, by using organic catalysts large quantities of products are expected to be prepared using a minimal amount of small organic molecules [7, 8]. The recent organocatalytic protocols are particularly attractive because of the mildness of the reaction conditions, operational simplicity, the potential for the development of large-scale production, and the ready availability and low toxicity of the organocatalysts [9, 10]. Organocatalyzed reactions using water as a solvent have attracted a great deal of attention

References

[1]  A. R. Kiasat, F. Kazemi, and M. F. Mehrjardi, “Basic alumina as an efficient catalyst for preparation of semicarbazones in solvent free conditions,” Journal of the Chinese Chemical Society, vol. 54, no. 5, pp. 1337–1339, 2007.
[2]  A. R. Kiasat, F. Kazemi, and M. F. Mehrjardi, “Synthesis of semicarbazones from carbonyl compounds under solvent free conditions,” Asian Journal of Chemistry, vol. 17, no. 4, pp. 2830–2832, 2005.
[3]  B. F. Mirjalili, M. A. Zolfigol, A. Bamoniri, and A. Hazar, “Al(HSO4)3 as an efficient catalyst for acetalization of carbonyl compounds under heterogeneous or solvent-free conditions,” Journal of the Brazilian Chemical Society, vol. 16, no. 4, pp. 877–880, 2005.
[4]  P. Salehi, M. Dabiri, M. A. Zolfigol, and M. A. B. Fard, “Silica sulfuric acid as an efficient and reusable reagent for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions,” Journal of the Brazilian Chemical Society, vol. 15, no. 5, pp. 773–776, 2004.
[5]  P. Salehi, M. A. Zolfigol, F. Shirini, and M. Baghbanzadeh, “Silica sulfuric acid and silica chloride as efficient reagents for organic reactions,” Current Organic Chemistry, vol. 10, no. 17, pp. 2171–2189, 2006.
[6]  P. Merino, E. Marqués-López, T. Tejero, and R. P. Herrera, “Organocatalyzed Strecker reactions,” Tetrahedron, vol. 65, no. 7, pp. 1219–1234, 2009.
[7]  P. I. Dalko and L. Moisan, “In the golden age of organocatalysis,” Angewandte Chemie, vol. 43, no. 39, pp. 5138–5175, 2004.
[8]  H. Pellissier, “Asymmetric organocatalysis,” Tetrahedron, vol. 63, no. 38, pp. 9267–9331, 2007.
[9]  M. G. Dekamin, S. Sagheb-Asl, and M. Reza Naimi-Jamal, “An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst,” Tetrahedron Letters, vol. 50, no. 28, pp. 4063–4066, 2009.
[10]  Y. Shen, X. Feng, Y. Li, G. Zhang, and Y. Jiang, “A mild and efficient cyanosilylation of ketones catalyzed by a Lewis acid-Lewis base bifunctional catalyst,” Tetrahedron, vol. 59, no. 30, pp. 5667–5675, 2003.
[11]  X. Pan, M. Lei, J. Zou, and W. Zhang, “Mn(OAc)3-promoted regioselective free radical thiocyanation of indoles and anilines,” Tetrahedron Letters, vol. 50, no. 3, pp. 347–349, 2009.
[12]  R. G. Guy, “Syntheses and preparative applications of thiocyanates,” in The Chemistry of the Cyanates and Their Thio Derivatives, S. Patai, Ed., pp. 819–886, Wiley Interscience, New York, NY, USA, 1977.
[13]  T. Billard, B. R. Langlois, and M. Médebielle, “Tetrakis(dimethylamino)ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates. A new simple access to heteroaryl-SCF2R derivatives,” Tetrahedron Letters, vol. 42, no. 20, pp. 3463–3465, 2001.
[14]  R. G. Mehta, J. Liu, A. Constantinou et al., “Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage,” Carcinogenesis, vol. 16, no. 2, pp. 399–404, 1995.
[15]  O. Prakash, H. Kaur, H. Batra, N. Rani, S. P. Singh, and R. M. Moriarty, “α-thiocyanation of carbonyl and β-dicarbonyl compounds using (dichloroiodo)benzene-lead(II) thiocyanate,” Journal of Organic Chemistry, vol. 66, no. 6, pp. 2019–2023, 2001.
[16]  F. Shahidi, “Thioglucosides of Brassica oilseeds and their process-induced chemical transformations,” in Sulfur Compounds in Foods, C. J. Mussinan and M. E. Keelan, Eds., chapter 9, pp. 106–126, American Chemical Society, Washington, DC, USA, 1994.
[17]  Z. Zhang and L. S. Liebeskind, “Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate. A cyanide-free cyanation of boronic acids,” Organic Letters, vol. 8, no. 19, pp. 4331–4333, 2006.
[18]  R. Riemschneider, “Thiocarbamates and related compounds. X. A new reaction of thiocyanates,” Journal of the American Chemical Society, vol. 78, no. 4, pp. 844–847, 1956.
[19]  R. Riemschneider, F. Wojahn, and G. Orlick, “Thiocarbamates. III. Aryl thiocarbamates from aryl thiocyanates,” Journal of the American Chemical Society, vol. 73, no. 12, pp. 5905–5907, 1951.
[20]  Y. T. Lee, S. Y. Choi, and Y. K. Chung, “Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates,” Tetrahedron Letters, vol. 48, no. 32, pp. 5673–5677, 2007.
[21]  M. S. Grant and H. R. Snyder, “Thiocyanation of indole. Some reactions of 3-thiocyanoindole,” Journal of American Chemical Society, vol. 82, pp. 2742–2744, 1960.
[22]  E. S?derb?ck, “über katalytische Rhodanierung von aromatischen Kernen,” Acta Chemica Scandinavica, vol. 8, pp. 1851–1858, 1954.
[23]  G. Wu, Q. Liu, Y. Shen, W. Wu, and L. Wu, “Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone,” Tetrahedron Letters, vol. 46, no. 35, pp. 5831–5834, 2005.
[24]  F. D. Toste, V. De Stefano, and I. W. J. Still, “A versatile procedure for the preparation of aryl thiocyanates using N-thiocyanatosuccinimide (NTS),” Synthetic Communications, vol. 25, no. 8, pp. 1277–1286, 1995.
[25]  V. Nair, T. G. George, L. G. Nair, and S. B. Panicker, “A direct synthesis of aryl thiocyanates using cerium(IV) ammonium nitrate,” Tetrahedron Letters, vol. 40, no. 6, pp. 1195–1196, 1999.
[26]  M. Chakrabarty and S. Sarkar, “A clay-mediated eco-friendly thiocyanation of indoles and carbazoles,” Tetrahedron Letters, vol. 44, no. 44, pp. 8131–8133, 2003.
[27]  J. S. Yadav, B. V. S. Reddy, S. Shubashree, and K. Sadashiv, “Iodine/MeOH: a novel and efficient reagent system for thiocyanation of aromatics and heteroaromatics,” Tetrahedron Letters, vol. 45, no. 14, pp. 2951–2954, 2004.
[28]  N. Iranpoor, H. Firouzabadi, D. Khalili, and R. Shahin, “A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines,” Tetrahedron Letters, vol. 51, no. 27, pp. 3508–3510, 2010.
[29]  N. Iranpoor, H. Firouzabadi, and R. Azadi, “A new diphenylphosphinite ionic liquid (IL-OPPh2) as reagent and solvent for highly selective bromination, thiocyanation or isothiocyanation of alcohols and trimethylsilyl and tetrahydropyranyl ethers,” Tetrahedron Letters, vol. 47, no. 31, pp. 5531–5534, 2006.
[30]  K. H. Chaudhari, U. S. Mahajan, D. S. Bhalerao, and K. G. Akamanchi, “Novel and facile transformation of N,N-disubstituted glycylamides into corresponding cyanamides by using pentavalent iodine reagents in combination with tetraethylammonium bromide,” Synlett, no. 18, pp. 2815–2818, 2007.
[31]  J. S. Yadav, B. V. S. Reddy, and B. B. M. Krishna, “IBX: a novel and versatile oxidant for electrophilic thiocyanation of indoles, pyrrole and arylamines,” Synthesis, no. 23, pp. 3779–3782, 2008.
[32]  J. S. Yadav, B. V. S. Reddy, A. D. Krishna, C. S. Reddy, and A. V. Narsaiah, “Ferric(III) chloride-promoted electrophilic thiocyanation of aromatic and heteroaromatic compounds,” Synthesis, no. 6, pp. 961–964, 2005.
[33]  A. Kumar, P. Ahamd, and R. A. Maurya, “Direct α-thiocyanation of carbonyl and β-dicarbonyl compounds using potassium peroxydisulfate-copper(II),” Tetrahedron Letters, vol. 48, no. 8, pp. 1399–1401, 2007.
[34]  J. S. Yadav, B. V. S. Reddy, and Y. J. Reddy, “1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2,2,2]octane bis(tetrafluoroborate) as novel and versatile reagent for the rapid thiocyanation of indoles, azaindole, and carbazole,” Chemistry Letters, vol. 37, pp. 652–653, 2008.
[35]  A. Khazaei, M. A. Zolfigol, M. Mokhlesi, and M. Pirveysian, “Citric acid as a trifunctional organocatalyst for thiocyanation of aromatic and heteroaromatic compounds in aqueous media,” Canadian Journal of Chemistry, vol. 90, no. 5, pp. 427–432, 2012.
[36]  E. Rezaee Nezhad, F. Heidarizadeh, S. Sajjadifar, and Z. Abbasi, “Dispersing of petroleum asphaltenes by acidic ionic liquid and determination by UV-visible spectroscopy,” Journal of Petroleum Engineering, vol. 2013, Article ID 203036, 5 pages, 2013.
[37]  S. Sajjadifar, “Boron sulfonic acid (2008–2012),” International Journal of ChemTech Research, vol. 5, pp. 385–389, 2013.
[38]  S. Sajjadifar, E. Rezaee Nezhad, and G. Darvishi, “1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride as a new and green ionic liquid catalyst for one-pot synthesis of dihydropyrimidinones under solvent-free condition,” Journal of Chemistry, vol. 2013, Article ID 834656, 6 pages, 2013.
[39]  S. Sajjadifar, M. A. Zolfigol, G. Chehardoli, S. Miri, and P. Moosavi, “Qinoxaline II. A practical efficient and rapid synthesis of new quinoxalines catalyzed by citric acid as a trifunctional Bronsted acid at room temperature under green condition,” International Journal of ChemTech Research, vol. 5, pp. 422–429, 2013.
[40]  M. A. Zolfigol, H. Vahedi, A. Massoudi, S. Sajjadifar, O. Louie, and N. Javaherneshan, “Mild and efficient one pot synthesis of benzimidazoles from aldehydes by using BSA as a new catalyst,” Clinical Biochemistry, vol. 44, supplement, no. 13, pp. S219–S219, 2011.
[41]  M. A. Zolfigol, A. Khazaei, M. Mokhlesi, H. Vahedi, S. Sajadifar, and M. Pirveysian, “Heterogeneous and catalytic thiocyanation of aromatic compounds in aqueous media,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 187, no. 3, pp. 295–306, 2012.
[42]  A. Khazaei, M. A. Zolfigol, M. Mokhlesi, F. D. Panah, and S. Sajjadifar, “Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media,” Helvetica Chimica Acta, vol. 95, no. 1, pp. 106–114, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133