ZnO nanowire morphology has been widely studied due to its unique material properties and excellent performance in electronics, optics, and photonic. Recently, photocatalytic applications of ZnO nanowire are creating an increasing interest in the environmental applications. This paper presents a low-cost and ecofriendly synthesis of ZnO with cauliflower morphology and its effectiveness in photocatalysis. 1. Introduction Organic dyes are very important and widely used in different industries such as textile, rubber, and plastic and hence one of the largest group of pollutants released into wastewaters [1]. They have caused several environmental contaminations, affecting human survival and developments. Degradation and removal of them are a great challenge for protecting the environment. However, the routine techniques for treating organic dyes are usually ineffective and costly to remove pollutions from water [2]. Nanomaterials have attracted high interest due to their noticeable performance in electronics, optics, and photonics. One-dimensional (1D) nanostructures such as nanowire, nanorods, nanofibers, nanobelts, and nanotubes have been of intense interest in both academic research and industrial applications. They also play an important role as interconnectors and functional units in the fabrication of electronics, optoelectronics, electrochemical, and electromechanical nanodevices [3]. For their application in solar energy conversion and environmental purification, among various semiconductor photocatalysts, TiO2 is much known for its strong oxidizing power and nontoxicity. But the major limitation in semiconductor photocatalysis is the relatively low value of the overall quantum efficiency, because of the high recombination rate of photo-induced electron-hole pairs at or near its surface. ZnO is a semiconductor material with direct wide band gap energy (3.37?eV) and a large exciton binding energy (60?meV) at room temperature. ZnO is currently attracting worldwide intense interests because of its importance in fundamental studies and its numerous applications especially as optoelectronic materials [4, 5], UV lasers [6]. Light-emitting diodes [7], solar cells [8], nanogenerators [9], gas sensors [10], photodetectors [11], and photocatalyst [12]. Photocatalysis is the promising process for environmental protection because of being able to oxidize low concentrations of organic pollutants into benign products [13–15]. Figure 1 shows mechanism of photocatalytic process. There are number of semiconductors that could be used as photocatalyst, such as TiO2,
References
[1]
F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam, and R. Naidu, “Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review,” Applied Catalysis A, vol. 359, no. 1-2, pp. 25–40, 2009.
[2]
L. Y. Yang, S. Y. Dong, J. H. Sun, J. L. Feng, Q. H. Wu, and S. P. Sun, “Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst,” Journal of Hazardous Materials, vol. 179, no. 1–3, pp. 438–443, 2010.
[3]
G. C. Yi, C. Wang, and W. I. Park, “ZnO nanorods: synthesis,characterization and applications,” Semiconductor Science and Technology, vol. 20, pp. S22–S34, 2005.
[4]
F. Lu, W. Cai, and Y. Zhang, “ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance,” Advanced Functional Materials, vol. 18, no. 7, pp. 1047–1056, 2008.
[5]
J. Qu, C. Luo, and Q. Cong, “Synthesis of multi-walled carbon nanotubes/ZnO nanocomposites using absorbent cotton,” Nano-Micro Letters, vol. 3, pp. 115–120, 2011.
[6]
S. Chu, G. Wang, W. Zhou et al., “Electrically pumped waveguide lasing from ZnO nanowires,” Nature Nanotechnology, vol. 6, no. 8, pp. 506–510, 2011.
[7]
J. H. Na, M. Kitamura, M. Arita, and Y. Arakawa, “Hybrid p-n junction light-emitting diodes based on sputtered ZnO and organic semiconductors,” Applied Physics Letters, vol. 95, no. 25, Article ID 253303, 2009.
[8]
P. Sudhagar, R. S. Kumar, J. H. Jung et al., “Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells,” Materials Research Bulletin, vol. 46, no. 9, pp. 1473–1479, 2011.
[9]
Z. L. Wang, R. Yang, J. Zhou et al., “Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics,” Materials Science and Engineering R, vol. 70, no. 3–6, pp. 320–329, 2010.
[10]
J. Xu, J. Han, Y. Zhang, Y. Sun, and B. Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors,” Sensors and Actuators B, vol. 132, no. 1, pp. 334–339, 2008.
[11]
C. Y. Lu, S. J. Chang, S. P. Chang et al., “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates,” Applied Physics Letters, vol. 89, no. 15, Article ID 153101, 2006.
[12]
S. Cho, S. Kim, J. W. Jang, et al., “Large-scale fabrication of sub-20-nm-diameter ZnO nanorod arrays at room temperature and their photocatalytic activity,” Journal of Physical Chemistry C, vol. 113, no. 24, pp. 10452–10458, 2009.
[13]
S. S. Srinivasan, J. Wade, E. K. Stefanakos, and Y. Goswami, “Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2,” Journal of Alloys and Compounds, vol. 424, no. 1-2, pp. 322–326, 2006.
[14]
H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano, vol. 4, no. 1, pp. 380–386, 2010.
[15]
D. Y. Goswami, “Decontamination of ventilation systems using photocatalytic air cleaning technology,” Journal of Solar Energy Engineering, Transactions of the ASME, vol. 125, no. 3, pp. 359–365, 2003.
[16]
A. Sapkota, A. J. Anceno, S. Baruah, O. V. Shipin, and J. Dutta, “Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water,” Nanotechnology, vol. 22, no. 21, Article ID 215703, 2011.
[17]
M. Ladanov, M. K. Ram, G. Matthews, and A. Kumar, “Structure and opto-electrochemical properties of ZnO nanowires grown on n-Si substrate,” Langmuir, vol. 27, no. 14, pp. 9012–9017, 2011.
[18]
D. M. Fouad and M. B. Mohamed, “Comparative study of the photocatalytic activity of semiconductor nanostructures and their hybrid metal nanocomposites on the photodegradation of malathion,” Journal of Nanomaterials, vol. 2012, Article ID 524123, 8 pages, 2012.
[19]
A. A. Khodja, T. Sehili, J. F. Pilichowski, and P. Boule, “Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions,” Journal of Photochemistry and Photobiology A, vol. 141, no. 2-3, pp. 231–239, 2001.
[20]
G. Marcì, V. Augugliaro, M. J. López-Mu?oz et al., “Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime,” Journal of Physical Chemistry B, vol. 105, no. 5, pp. 1033–1040, 2001.
[21]
N. Sobana and M. Swaminathan, “The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO,” Separation and Purification Technology, vol. 56, no. 1, pp. 101–107, 2007.
[22]
Q. Wan, T. H. Wang, and J. C. Zhao, “Enhanced photocatalytic activity of ZnO nanotetrapods,” Applied Physics Letters, vol. 87, no. 8, pp. 1–3, 2005.
[23]
N. V. Kaneva, D. T. Dimitrov, and C. D. Dushkin, “Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light,” Applied Surface Science, vol. 257, no. 18, pp. 8113–8120, 2011.
[24]
S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2,” Solar Energy Materials and Solar Cells, vol. 77, no. 1, pp. 65–82, 2003.
[25]
S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, and M. A. Hashib, “Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments,” Desalination, vol. 261, no. 1-2, pp. 3–18, 2010.
[26]
H. Ghayour, H. R. Rezaie, S. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum, vol. 86, no. 1, pp. 101–105, 2011.
[27]
W. Y. Wu, C. C. Yeh, and J. M. Ting, “Effects of seed layer characteristics on the synthesis of ZnO nanowires,” Journal of the American Ceramic Society, vol. 92, no. 11, pp. 2718–2723, 2009.
[28]
N. V. Suramwar, S. R. Thakare, N. N. Karade, and N. T. Khati, “Green synthesis of predominant (111) facet CuO nanoparticles: heterogeneousand recyclable catalyst for N-arylation of indoles,” Journal of Molecular Catalysis A, vol. 359, pp. 28–34, 2012.
[29]
G. Kenanakis, D. Vernardou, E. Koudoumas, and N. Katsarakis, “Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires' diameter,” Journal of Crystal Growth, vol. 311, no. 23-24, pp. 4799–4804, 2009.
[30]
A. Sugunan, V. K. Guduru, A. Uheida, M. S. Toprak, and M. Muhammed, “Radially oriented ZnO nanowires on flexible poly-L-lactide nanofibers for continuous-flow photocatalytic water purification,” Journal of the American Ceramic Society, vol. 93, no. 11, pp. 3740–3744, 2010.
[31]
G. Kenanakis and N. Katsarakis, “Light-induced photocatalytic degradation of stearic acid by c-axis oriented ZnO nanowires,” Applied Catalysis A, vol. 378, no. 2, pp. 227–233, 2010.
[32]
Y. Zhang, J. Xu, P. Xu, Y. Zhu, X. Chen, and W. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology, vol. 21, no. 28, Article ID 285501, 2010.
[33]
C. Ma, Z. Zhou, H. Wei, Z. Yang, Z. Wang, and Y. Zhang, “Rapid large-scale preparation of ZnO nanowires for photocatalytic application,” Nanoscale Research Letters, vol. 6, no. 1, article 536, 2011.
[34]
S. Baruah, M. Abbas, M. Myint, T. Bora, and J. Dutta, “Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods,” Beilstein Journal of Nanotechnology, vol. 1, pp. 14–20, 2010.