全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Catalytic Synthesis of Pyrazolo[3,4-d]pyrimidin-6-ol and Pyrazolo[3,4-d]pyrimidine-6-thiol Derivatives Using Nanoparticles of NaX Zeolite as Green Catalyst

DOI: 10.1155/2013/657409

Full-Text   Cite this paper   Add to My Lib

Abstract:

An efficient and environmental benign method is reported for the synthesis of some pyrazolopyrimidine derivatives using 3-methyl-1-phenyl-5-pyrazolone with carbonyl compounds in the presence of nanozeolite Nax catalysts, solvent-free and at reflux conditions. It is noteworthy to mention that this method of the synthesis requires less time, less temperature, and better yield. 1. Introduction Pyrazolopyrimidine derivatives have received a great deal of attention due to their pharmacological activities. Pyrazolopyrimidine derivatives have demonstrated promising antimicrobial activity against gram-positive bacteria [1]. Synthesis of such biologically important compounds assumes great importance. Pyrazolopyrimidine derivatives are purine analogues, and as such they have useful properties as antimetabolites in purine biochemical reaction [2]. Moreover, these compounds also display marked antitumor and antileukemic activities [3]. Pyrazolopyrimidine derivatives have received a great deal of attention due to their pharmacological activity [4], such as allopurino [5], which is still the drug of choice for the treatment of hyperuricemia and gouty arthritis [6]. 1-Phenyl-3-methyl-4-arylmethylene-5-pyrazolones are very useful intermediates in the synthesis of substituted pyrazolones, generally, which were prepared by the condensation of 3-methyl-1-phenyl-5-pyrazolone with aromatic aldehydes [7]. The incorporation of another heterocyclic moiety in pyrans either in the form of a substituent or as a fused component changes its properties and converts it into an altogether new and important heterocyclic derivative. Pyrazoles have attracted particular interest over the last few decades due to the use of such ring system as the core nucleus in various drugs. They are well known for their popular pharmacological activities. Considering the importance of pyrazolone derivatives, it was thought worthwhile to synthesize new compounds incorporating both these moieties. All the compounds synthesized in the present study were screened for their antibacterial activity against some bacteria (both gram-negative and gram-positive) namely, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, and C. albicans by filter paper disc technique. Zeolite X is a highly versatile molecular sieve from the faujasite family of zeolites whose 7.4??, three-dimensional pore structure and solid acidity make it useful as a catalyst, adsorbent, membrane, and others [8–10]. This type of zeolite is used for heavy metal adsorption [11], aromatics from aromatic/alkane

References

[1]  B. G. Hildick and G. Shaw, “Purines, pyrimidines, and imidazoles. Part XXXVII. Some new syntheses of pyrazolo[3,4-d]pyrimidines, including allopurinol,” Journal of the Chemical Society C, pp. 1610–1613, 1971.
[2]  E. W. Satherland, G. A. Robinson, and R. W. Butcher, “Some aspects of the biological role of adenosine 3′,5′-monophosphate (Cyclic AMP),” Circulation, vol. 37, pp. 279–306, 1968.
[3]  R. A. Earl, R. J. Pugmire, G. R. Revankar, and L. B. Townsend, “A chemical and carbon-13 nuclear magnetic resonance reinvestigation of the N-methyl isomers obtained by direct methylation of 5-amino-3,4-dicyanopyrazole and the synthesis of certain pyrazolo [3,4-d]pyrimidines,” Journal of Organic Chemistry, vol. 40, no. 12, pp. 1822–1828, 1975.
[4]  D. Villemin and B. Labiad, “Clay catalysis: dry condensation of 3-Methyl-1- Phenyl-5-Pyrazolone with aldehydes under microwave irradiation,” Synthetic Communications, vol. 20, pp. 3213–3220, 1990.
[5]  T. Welton, “Room-temperature ionic liquids. Solvents for synthesis and catalysis,” Chemical Reviews, vol. 99, no. 8, pp. 2071–2084, 1999.
[6]  P. Traxler, G. Bold, J. Frie, M. Lang, N. Lydon, and H. Mett, “Steroidal affinity labels of the estrogen receptor. 3. Estradiol 11α-n-Alkyl derivatives bearing a terminal electrophilic group: antiestrogenic and cytotoxic properties,” Journal of Medicinal Chemistry, vol. 40, pp. 2217–2225, 1997.
[7]  G. Desimoni, L. Astolfi, M. Cambieri, A. Gamba, and G. Tacconi, “Heterodiene syntheses-XII. The conformational analysis of cis and trans 2-alkoxy-4-phenyl-2,3-dihydropyran[2,3-c] pyrazoles: steric interactions and the anomeric effect,” Tetrahedron, vol. 29, no. 17, pp. 2627–2634, 1973.
[8]  S. Sanga, Z. Liu, P. Tiana, Z. Liua, L. Qua, and Y. Zhang, “Synthesis of small crystals zeolite NaY,” Materials Letters, vol. 60, pp. 1131–1131, 2006.
[9]  B. H. Wang, Y. Y. Xia, S. Y. Zhuang, Y. H. Zhang, and T. T. Yan, The Imaging Science Journal, vol. 25, pp. 131–135, 1998.
[10]  S. Mintova and V. Valtchev, “Synthesis of nanosized fau-type zeolite,” Studies in Surface Science and Catalysis, vol. 125, pp. 141–148, 1999.
[11]  Y. S. Ok, J. E. Yang, Y. S. Zhang, S. J. Kim, and D. Y. Chung, “Heavy metal adsorption by a formulated zeolite-Portland cement mixture,” Journal of Hazardous Materials, vol. 147, no. 1-2, pp. 91–96, 2007.
[12]  M. Fathizadeh and M. Nikazar, “Adsorption of aromatic from alkane/aromatic mixtures by NaY zeolite,” Journal of Chemical Engineering of Japan, vol. 42, no. 4, pp. 241–247, 2009.
[13]  C. R. Jacob, S. P. Varkey, and P. Ratnasamy, “Oxidation of para-xylene over zeolite-encapsulated copper and manganese complexes,” Applied Catalysis A, vol. 182, no. 1, pp. 91–96, 1999.
[14]  M. W. Ackley, S. U. Rege, and H. Saxena, “Application of natural zeolites in the purification and separation of gases,” Microporous and Mesoporous Materials, vol. 61, pp. 25–42, 2003.
[15]  L. J. Garces, V. D. Makwana, B. Hincapie, A. Sacco, and S. L. Suib, “Selective N,N-methylation of aniline over cocrystallized zeolites RHO and zeolite X (FAU) and over Linde type L (Sr,K-LTL),” Journal of Catalysis, vol. 217, no. 1, pp. 107–116, 2003.
[16]  F. N. Guerzoni and J. Abbot, “Catalytic cracking of a binary mixture on zeolite catalysts,” Applied Catalysis A, vol. 103, no. 2, pp. 243–258, 1993.
[17]  M. C. Hausladen and C. R. F. Lund, “Zeolite-catalyzed chlorination of toluene by sulfuryl chloride: activity, selectivity and deactivation of NaX and NaY zeolites,” Applied Catalysis A, vol. 190, no. 1-2, pp. 269–281, 2000.
[18]  C. T. Fishel, R. J. Davis, and J. M. Garces, “Ammonia synthesis catalyzed by ruthenium supported on basic zeolites,” Journal of Catalysis, vol. 163, no. 1, pp. 148–157, 1996.
[19]  B. W. Jo, C. H. Kim, G. H. Tae, and J. B. Park, “Characteristics of cement mortar with nano-SiO2 particles,” Construction and Building Materials, vol. 21, no. 6, pp. 1351–1355, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133