全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mechanical Behaviour and Fracture Mechanics of Praseodymium Modified Lead Titanate Ceramics Prepared by Solid-State Reaction Route

DOI: 10.1155/2013/280605

Full-Text   Cite this paper   Add to My Lib

Abstract:

The praseodymium modified lead titanate ceramics with composition where = 0.04, 0.06, 0.08, and 0.10 prepared by solid-state reaction technique were subjected to indentation induced hardness testing method. The indentations were induced in the applied load ranging from 0.245?N to 4.90?N. The microhardness varies nonlinearly with load and was best explained by the concept of Newtonian resistance pressure as proposed by Hays and Kendall’s law. Crack propagation, fracture toughness ( ), brittleness index ( ), and yield strength ( ) were studied to understand the effect of Pr content on various mechanical parameters. The load independent values were found to increase with the increase in praseodymium content. 1. Introduction Ceramics are generally associated with distinctive problems, some uniquely beneficial and restrictive which determine the materials utilities, among these are hardness, brittleness, and fracture toughness. The measured hardness of a brittle material as determined by conventional tests (Vickers, Knoop, Rockwell, etc.) is a measure of materials resistance to deformation, densification, displacement and fracture. Conventional hardness measurements, which depend on size of an indentation resulting from an applied load, are load independent. This is especially noticeable at lower indentation loads where most measurements are made in order to avoid experimental problems associated with fracture. Local fracture around and under an indentation can affect the depth of penetration or size of the indentation and thus can be considered an intrinsic part of the indentation process. Fracture can also create practical difficulties in making hardness measurements because cracking at indentation corners or fragmentation can hamper hardness measurements. The degree of fracture at indentations in ceramics is load dependent. Low loads are associated with deformation while fracture is conspicuously more prominent at high loads. Microindentation technology has been used for the measurements of fracture toughness of ceramic materials by Evans and Charles [1]. Generally, the dielectric, piezoelectric, elastic, and mechanical behavior of ferroelectric ceramics depend in a complex way on microstructural parameters such as porosity, grain size, and grain boundary effects. The properties of ferroelectric ceramics are also very sensitive to temperature, to stress and strain, to frequency, and so forth. Lead titanate (PbTiO3) is well known as a perovskites type ferroelectric material with a high Curie point ( ) of 490°C. A phase transition from the paraelectric

References

[1]  A. G. Evans and E. A. Charles, “Fracture toughness determination by indentation,” Journal of the American Ceramic Society, vol. 59, no. 7-8, pp. 371–372, 1976.
[2]  Y. Matsuo and H. Saski, “Effect of grain size on micro cracking in lead titanate ceramics,” Journal of the American Ceramic Society, vol. 49, no. 4, pp. 229–230, 1966.
[3]  T. Y. Tien and W. G. Carlson, “Effect of additive on properties of lead titanate,” Journal of the American Ceramic Society, vol. 45, no. 12, pp. 567–571, 1962.
[4]  I. Ueda and S. Ikegarni, “Piezoelectric properties of modified PbTiO3 ceramics,” Japanese Journal of Applied Physics, vol. 7, no. 3, pp. 236–242, 1968.
[5]  V. Singh, K. K. Bamzai, S. Suri, and N. Nidhi, “Preparation, structural and electrical characteristics of praseodymium modified lead titanate,” Ceramics International, vol. 37, no. 7, pp. 2655–2662, 2011.
[6]  T. Takahashi, “Influence of samarium substitution on dielectric properties of barium titanate based ceramics,” Ceramic Bulletin, vol. 69, pp. 691–695, 1990.
[7]  P. Kumar, S. Singh, J. K. Juneja, C. Prakash, and K. K. Raina, “Influence of samarium substitution on dielectric properties of barium titanate based ceramics,” Modern Physics Letters B, vol. 23, no. 28, pp. 3419–3425, 2009.
[8]  C. Asaheron, C. Huse, G. Kuhn, and H. Neumann, “Microhardness of Sn-doped lnP,” Crystal Research and Technology, vol. 24, pp. 33–35, 1989.
[9]  K. Balakrishnan, B. Vengatesan, N. Kanniah, and P. Ramasamy, “Growth and microindentation studies of CulnSe2 single crystals,” Journal of Materials Science Letters, vol. 9, no. 7, pp. 785–787, 1990.
[10]  K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, “Fracture mechanics, crack propagation and microhardness studies on flux grown ErAlO3 single crystals,” Journal of Materials Science and Technology, vol. 16, no. 4, pp. 405–410, 2000.
[11]  P. R. Dhar, K. Bamzai, and P. N. Kotru, “Deformation and microhardness studies on natural apophyllite crystals,” Crystal Research and Technology, vol. 32, no. 4, pp. 537–544, 1997.
[12]  J. Guille and M. Sieskind, “Microindentation studies on BaFCl single crystals,” Journal of Materials Science, vol. 26, no. 4, pp. 899–903, 1991.
[13]  J. Ricote, L. Pardo, and B. Jiménez, “Mechanical characterization of calcium-modified lead titanate ceramics by indentation methods,” Journal of Materials Science, vol. 29, no. 12, pp. 3248–3254, 1994.
[14]  H. Buckle, “Progress in microindentation hardness testing,” International Materials Reviews, vol. 4, no. 1, pp. 49–100.
[15]  J. R. Pandya, L. J. Bhagia, and A. J. Shah, “Microhardness of rhombohedral crystals: calcite and sodium nitrate,” Bulletin of Materials Science, vol. 5, no. 1, pp. 79–82, 1983.
[16]  C. A. Brookes, “The mechanical properties of cubic boron nitride-a perspective view,” Institute of Physics Conference Series, vol. 75, pp. 207–220, 1986.
[17]  F. Kick, Das Gesetz der proportionalen Widerst?nde und seine Anwendungen, Felix, Leipzig, Germany, 1885.
[18]  J. B. Quinn and G. D. Quinn, “Indentation brittleness of ceramics: a fresh approach,” Journal of Materials Science, vol. 32, no. 16, pp. 4331–4346, 1997.
[19]  C. Hays and E. G. Kendall, “An analysis of Knoop microhardness,” Metallography, vol. 6, no. 4, pp. 275–282, 1973.
[20]  R. Tickoo, R. P. Tandon, N. C. Mehra, and P. N. Kotru, “Dielectric and ferroelectric properties of lanthanum modified lead titanate ceramics,” Materials Science and Engineering B, vol. 94, no. 1, pp. 1–7, 2002.
[21]  P. Duran, J. F. F. Lozano, F. Capel, and C. Moure, “Large electromechanical anisotropic modified lead titanate ceramics. Part 2: dielectric, piezoelectric and mechanical properties,” Journal of Materials Science, vol. 24, no. 2, pp. 447–452, 1989.
[22]  R. Tickoo, R. P. Tandon, V. K. Hans, K. K. Bamzai, and P. N. Kotru, “Electromechanical and piezoelectric studies of lanthanum modified lead titanate ceramics,” Materials Science and Engineering B, vol. 100, no. 1, pp. 47–52, 2003.
[23]  T. Yamamoto, H. Igarashi, and K. Okazaki, “Dielectric, electromechanical, optical, and mechanical properties of lanthanum-modified lead titanate ceramics,” Journal of the American Ceramic Society, vol. 66, no. 5, pp. 363–366, 1983.
[24]  K. Okazaki, “Microstructure and properties of some electrooptic ceramics,” Ferroelectrics, vol. 49, no. 1, pp. 141–150, 1983.
[25]  J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, “The determination of yield strength from hardness measurements,” Metallurgical Transactions, vol. 2, no. 7, pp. 1979–1983, 1971.
[26]  H. Ishikaa and N. Shinkai, “Critical load for median crack initiation in vickers indentation of glasses,” Journal of the American Ceramic Society, vol. 65, no. 8, pp. C124–C127, 1980.
[27]  B. R. Lawn and A. G. Evans, “A model for crack initiation in elastic/plastic indentation fields,” Journal of Materials Science, vol. 12, no. 11, pp. 2195–2199, 1977.
[28]  C. B. Ponton and R. D. Rawlings, “Dependence of the vickers indentation fracture toughness on the surface crack length,” British Ceramic, vol. 88, no. 3, pp. 83–90, 1989.
[29]  D. J. Bhat, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” Journal of the American Ceramic Society C, vol. 64, no. 11, pp. C-165–C-166, 1981.
[30]  K. Niihara, R. Morena, and D. P. H. Hasselman, “Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios,” Journal of Materials Science Letters, vol. 1, no. 1, pp. 13–16, 1982.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133