全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Two-Dimensional Simulation of Electrospun Nanofibrous Structures: Connection of Experimental and Simulated Results

DOI: 10.1155/2014/479139

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanofibrous mats were obtained from electrospinning Nylon-6 solutions with concentrations of 30 and 35 wt% and were tested for filtration of polystyrene particles in suspension. Some experimental results were compared with the simulated ones. In the simulation, the two-dimensional structures were constructed by randomly depositing a nanofiber, which was assumed as an ellipse with an aspect ratio of 100, one by one. The nanofiber size is assumed to be polydisperse. The results showed that simulated configurations resembled real nanofibers with polydisperse diameters. Fibers from higher solution concentration were larger, resulting in larger pore size, which was confirmed with simulations. Varying the size distribution around the same average value did not make any difference to the surface coverage but it affected 2D pore areas for the systems at low fiber density. In addition, the probability for a particle to pass through the porous structure was less when the fiber density was higher and the particle diameter was larger, which was consistent with the filtration test. Lastly, water flux measurement could yield the void volume fraction as well as the volume-averaged pore diameter, which was found to be greater than the averaged 2D pore diameter from SEM micrographs by the quantity related to the fiber size. 1. Introduction Electrospinning technique is an easy method to produce nanofibers with size in submicron or nanometer range, by applying the electrical force generated by the electric field between the end of the metal needle and the ground collector. The liquid source for spinning fibers may be a polymer melt or a polymer solution. A polymer melt or a polymer solution is placed in a syringe. Once the applied electrical force is greater than the surface tension of the hanging hemisphere drop at the end of the syringe needle, the liquid is pulled out of the needle and swirled onto the collector surface. Continuous fibers are produced in this manner. While the solvent evaporates, the final nonwoven nanofibrous structure is solidified. A large number of papers discussing the production of nanofibers from various polymer systems and their applications have been published [1–5]. The research on nanofibers is still receiving more and more attention. Indeed, the benefit of large surface area to volume ratio of nanofibrous structures improves their performance in many aspects including higher mechanical strength, an increase in surface activity, and an increase in adsorption capacity. Therefore, nanofibers were widely studied for use as sensors [1],

References

[1]  S.-W. Choi, A. Katoch, G. -J. Sun, and S. S. Kim, “Synthesis and gas sensing performance of ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure,” Sensors and Actuators B, vol. 181, pp. 787–794, 2013.
[2]  H. R. Pant, D. R. Pandeya, K. T. Nam, W.-I. Baek, S. T. Hong, and H. Y. Kim, “Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles,” Journal of Hazardous Materials, vol. 189, no. 1-2, pp. 465–471, 2011.
[3]  D.-G. Yu, W. Chian, X. Wang, X.-Y. Li, Y. Li, and Y.-Z. Liao, “Linear drug release membrane prepared by a modified coaxial electrospinning process,” Journal of Membrane Science, vol. 428, pp. 150–156, 2013.
[4]  R. Nirmala, R. Navamathavan, H.-S. Kang, M. H. El-Newehy, and H. Y. Kim, “Preparation of polyamide-6/chitosan composite nanofibers by a single solvent system via electrospinning for biomedical applications,” Colloids and Surfaces B, vol. 83, no. 1, pp. 173–178, 2011.
[5]  K. Desai, K. Kit, J. Li, P. Michael Davidson, S. Zivanovic, and H. Meyer, “Nanofibrous chitosan non-wovens for filtration applications,” Polymer, vol. 50, no. 15, pp. 3661–3669, 2009.
[6]  P. Danwanichakul, D. Dechojarassri, and R. Werathirachot, “An approximate model describing electrospinning of nanofibers: process parameter investigation,” International Journal of Electrospun Nanofibers and Applications, vol. 2, pp. 103–114, 2008.
[7]  H.-S. Park and Y. O. Park, “Filtration properties of electrospun ultrafine fiber webs,” Korean Journal of Chemical Engineering, vol. 22, no. 1, pp. 165–172, 2005.
[8]  S. J. Eichhorn and W. W. Sampson, “Statistical geometry of pores and statistics of porous nanofibrous assemblies,” Journal of the Royal Society Interface, vol. 2, no. 4, pp. 309–318, 2005.
[9]  B. Maze, H. Vahedi Tafreshi, Q. Wang, and B. Pourdeyhimi, “A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures,” Journal of Aerosol Science, vol. 38, no. 5, pp. 550–571, 2007.
[10]  S. A. Hosseini and H. V. Tafreshi, “3-D simulation of particle filtration in electrospun nanofibrous filters,” Powder Technology, vol. 201, no. 2, pp. 153–160, 2010.
[11]  W. Sambaer, M. Zatloukal, and D. Kimmer, “3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process,” Chemical Engineering Science, vol. 66, no. 4, pp. 613–623, 2011.
[12]  S. Zhang, W. S. Shim, and J. Kim, “Design of ultra-fine nonwovens via electrospinning of Nylon 6: spinning parameters and filtration efficiency,” Materials and Design, vol. 30, no. 9, pp. 3659–3666, 2009.
[13]  D. Hussain, F. Loyal, A. Greiner, and J. H. Wendorff, “Structure property correlations for electrospun nanofiber nonwovens,” Polymer, vol. 51, no. 17, pp. 3989–3997, 2010.
[14]  A. Thorvaldsson, P. Edvinsson, A. Glantz, K. Rodriguez, P. Walkenstr?m, and P. Gatenholm, “Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers,” Cellulose, vol. 19, pp. 1743–1748, 2012.
[15]  J. Wang, S. C. Kim, and D. Y. H. Pui, “Investigation of the figure of merit for filters with a single nanofiber layer on a substrate,” Journal of Aerosol Science, vol. 39, no. 4, pp. 323–334, 2008.
[16]  D. Aussawasathien, C. Teerawattananon, and A. Vongachariya, “Separation of micron to sub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters,” Journal of Membrane Science, vol. 315, no. 1-2, pp. 11–19, 2008.
[17]  E. Mauret and M. Renaud, “Transport phenomena in multi-particle systems—I. Limits of applicability of capillary model in high voidage beds-application to fixed beds of fibers and fluidized beds of spheres,” Chemical Engineering Science, vol. 52, no. 11, pp. 1807–1817, 1997.
[18]  P. Johnson, Fluid Sterilization by Filtration, Interpharm/CRC, New York, NY, USA, 3rd edition, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413