全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxidative Precipitation of Manganese from Acid Mine Drainage by Potassium Permanganate

DOI: 10.1155/2013/287257

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although oxidative precipitation by potassium permanganate is a widely recognised process for manganese removal, research dealing with highly contaminated acid mine drainage (AMD) has yet to be performed. The present study investigated the efficiency of KMnO4 in removing manganese from AMD effluents. Samples of AMD that originated from inactive uranium mine in Brazil were chemically characterised and treated by KMnO4 at pH 3.0, 5.0, and 7.0. Analyses by Raman spectroscopy and geochemical modelling using PHREEQC code were employed to assess solid phases. Results indicated that the manganese was rapidly oxidised by KMnO4 in a process enhanced at higher pH. The greatest removal, that is, 99%, occurred at pH 7.0, when treated waters presented manganese levels as low as 1.0?mg/L, the limit established by the Brazilian legislation. Birnessite (MnO2), hausmannite (Mn3O4), and manganite (MnOOH) were detected by Raman spectroscopy. These phases were consistently identified by the geochemical model, which also predicted phases containing iron, uranium, manganese, and aluminium during the correction of the pH as well as bixbyite (Mn2O3), nsutite (MnO2), pyrolusite (MnO2), and fluorite (CaF2) following the KMnO4 addition. 1. Introduction The oxidation of sulphide minerals exposed to oxygen and water produces acid effluents commonly referred to as acid mine drainage (AMD), described in detail elsewhere [1]. Although the generation of acid drainage is a natural phenomenon, mining activities can dramatically increase its production due to the large amounts of material usually exposed. In addition to its main characteristics (e.g., high acidity and sulphate levels), AMD features extensive chemical diversity, including metals such as iron, aluminium, and manganese in elevated concentrations [2]. These effluents are potentially hazardous to the environment. However, technologies available to deal with AMD are either unsuitable or costly [3]. Furthermore, practices are fairly exclusive and varying significantly from one site to another, which characterises several problems in terms of the implementation of available methodologies. In Brazil, for instance, as a consequence of high contents of manganese in the soil, the concentration of this metal in AMD can be up to 150 times the limit of 1.0?mg/L recognised by CONAMA Resolution 430 (Brazilian legislation) [4]. However, the majority of studies performed so far have addressed the removal of manganese from waters with low contamination such as drinking water (e.g., [5–8]). The management of AMD with exceptionally high

References

[1]  D. B. Johnson, “Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines,” Water, Air, and Soil Pollution, vol. 3, no. 1, pp. 47–66, 2003.
[2]  D. B. Johnson and K. B. Hallberg, “Acid mine drainage remediation options: a review,” Science of the Total Environment, vol. 338, no. 1-2, pp. 3–14, 2005.
[3]  A. Akcil and S. Koldas, “Acid Mine Drainage (AMD): causes, treatment and case studies,” Journal of Cleaner Production, vol. 14, no. 12-13, pp. 1139–1145, 2006.
[4]  CONAMA, Conselho Nacional do Meio Ambiente, Resolution 430, Brazil Ministério do Meio Ambiente, MMA, 2011, http://www.mma.gov.br/port/conama/res/res11/propresol_lanceflue_30e31mar11.pdf.
[5]  J. W. Zhu, Z. Zhang, X.-M. Li, X.-H. Xu, and D.-H. Wang, “Manganese removal from the Qiantang River source water by pre-oxidation: a case study,” Journal of Zhejiang University A, vol. 10, no. 3, pp. 450–457, 2009.
[6]  P. Roccaro, C. Barone, G. Mancini, and F. G. A. Vagliasindi, “Removal of manganese from water supplies intended for human consumption: a case study,” Desalination, vol. 210, no. 1–3, pp. 205–214, 2007.
[7]  R. Raveendran, B. Ashworth, and B. Chatelier, “Manganese removal in drinking water systems,” in Proceedings of the 64th Annual Water Industry Engineers and Operations Conference, pp. 92–100, Bendigo, Australia, 2001.
[8]  D. Ellis, C. Bouchard, and G. Lantagne, “Removal of iron and manganese from groundwater by oxidation and microfiltration,” Desalination, vol. 130, no. 3, pp. 255–264, 2000.
[9]  A. M. Silva, E. C. Cunha, F. D. R. Silva, and V. A. Le?o, “Treatment of high-manganese mine water with limestone and sodium carbonate,” Journal of Cleaner Production, vol. 29-30, pp. 11–19, 2012.
[10]  A. F. S. Gomes, L. L. Lopez, and A. C. Q. Ladeira, “Characterization and assessment of chemical modifications of metal-bearing sludges arising from unsuitable disposal,” Journal of Hazardous Materials, vol. 199-200, pp. 418–425, 2012.
[11]  W. Zhang and C. Y. Cheng, “Manganese metallurgy review. Part II: manganese separation and recovery from solution,” Hydrometallurgy, vol. 89, no. 3-4, pp. 160–177, 2007.
[12]  J. E. van Benschoten, W. Lin, and W. R. Knocke, “Kinetic modeling of manganese (II) oxidation by chlorine dioxide and potassium permanganate,” Environmental Science and Technology, vol. 26, no. 7, pp. 1327–1333, 1992.
[13]  Degrémont, Water Treatment Handbook, Degrémont, Paris, France, 6th edition, 1991.
[14]  O. J. Hao, A. P. Davis, and P. H. Chang, “Kinetics of manganese (II) oxidation with chlorine,” Journal of Environmental Engineering, vol. 117, no. 3, pp. 359–375, 1991.
[15]  S. J. Tewalt, M. Sato, F. T. Dulong, S. G. Neuzil, A. Kolker, and K. O. Dennen, “Use of ozone to remediate from coal mine drainage waters,” in Proceedings of the National Meeting of the American Society of Mining and Reclamation, pp. 19–23, Breckenridge, Colo, USA, 2005.
[16]  W. Zhang, P. Singh, and D. M. Muir, “SO2/O2 as an oxidant in hydrometallurgy,” Minerals Engineering, vol. 13, no. 13, pp. 1319–1328, 2000.
[17]  C. M. Kao, K. D. Huang, J. Y. Wang, T. Y. Chen, and H. Y. Chien, “Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study,” Journal of Hazardous Materials, vol. 153, no. 3, pp. 919–927, 2008.
[18]  J. Skousen and P. Ziemkiewicz, Acid Mine Drainage Control and Treatment, National Research Center for Coal and Energy, National Mine Land Reclamation Center, Morgantown, Wva, USA, 1996.
[19]  M. A. Kessick and J. J. Morgan, “Mechanism of autoxidation of manganese in aqueous solution,” Environmental Science and Technology, vol. 9, no. 2, pp. 157–159, 1975.
[20]  D. L. Parkhurst and C. A. J. Appelo, “User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations,” U. S. Geological Survey Water-Resources Investigations Report 99-4259, 1999.
[21]  H. Tan, G. Zhang, P. J. Heaney, S. M. Webb, and W. D. Burgos, “Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems,” Applied Geochemistry, vol. 25, no. 3, pp. 389–399, 2010.
[22]  W. M. Gitari, L. F. Petrik, D. L. Key, and C. Okujeni, “Partitioning of major and trace inorganic contaminants in fly ash acid mine drainage derived solid residues,” International Journal of Environmental Science and Technology, vol. 7, no. 3, pp. 519–534, 2010.
[23]  M. A. Robinson-Lora and R. A. Brennan, “Biosorption of manganese onto chitin and associated proteins during the treatment of mine impacted water,” Chemical Engineering Journal, vol. 162, no. 2, pp. 565–572, 2010.
[24]  J. W. Ball and D. K. Nordstrom, “WATEQ4F-user’s manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters,” U. S.Geological Survey Open-File, 1991.
[25]  J. E. Post, “Manganese oxide minerals: crystal structures and economic and environmental significance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3447–3454, 1999.
[26]  K. Lange, R. K. Rowe, and H. Jamieson, “Metal retention in geosynthetic clay liners following permeation by different mining solutions,” Geosynthetics International, vol. 14, no. 3, pp. 178–187, 2007.
[27]  R. J. Lovett, “Removal of manganese from acid mine drainage,” Journal of Environmental Quality, vol. 26, pp. 1017–1024, 1997.
[28]  J. W. Murray, J. G. Dillard, R. Giovanoli, H. Moers, and W. Stumm, “Oxidation of Mn(II): initial mineralogy, oxidation state and ageing,” Geochimica et Cosmochimica Acta, vol. 49, no. 2, pp. 463–470, 1985.
[29]  C. M. Julien, M. Massot, and C. Poinsignon, “Lattice vibrations of manganese oxides: part I. Periodic structures,” Spectrochimica Acta A, vol. 60, no. 3, pp. 689–700, 2004.
[30]  J. D. Hem and C. J. Lind, “Nonequilibrium models for predicting forms of precipitated manganese oxides,” Geochimica et Cosmochimica Acta, vol. 47, no. 11, pp. 2037–2046, 1983.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413