全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Removal of Azo Dyes (Violet B and Violet 5R) from Aqueous Solution Using New Activated Carbon Developed from Orange Peel

DOI: 10.1155/2013/283274

Full-Text   Cite this paper   Add to My Lib

Abstract:

Activated carbon developed from agricultural waste orange peel (COP) was prepared. COP was characterized using Fourier infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and BET. COP has surface area and mean pore diameter of 225.6?m2?g?1 and 22.40?nm, respectively. The removal of violet B (VB) and violet 5R (V5R) from aqueous solutions by COP was investigated. The effect of operational parameters such as contact time, pH, initial dye concentration, and adsorbent dosage on the adsorption of dyes was investigated. Maximum dye was removed within 30 min of contact time at pH > 7. Two common models, the Langmuir and Freundlich isotherms, were used to investigate the interaction of dye and COPs. The isotherm evaluations revealed that the Langmuir model provides better fit to the experimental data than the Freundlich model. The adsorption of VB and V5R onto COP was followed by pseudo-second-order kinetic model with a good correlation ( ). Activation energies 5.47 and 29.7?KJ?mol?1 were determined for violet B and violet 5R, respectively. The rate of adsorption of violet 5R was faster than that of violet B ( ). The prepared COP could thus be used as promising adsorbent for removal of organic dyes, especially azo dye, from polluted water. The solid COP could be conveniently regenerated after adsorption. 1. Introduction Many industries employ dyes and pigments to color their products. Most dyes are inert and nontoxic at the concentration discharged into the receiving water. Dyes are usually stable to photodegradation, biodegradation, and oxidizing agents [1]. Color removal from effluents is a major environmental problem because of difficulty of treating such streams by conventional physicochemical and biological treatment methods [2]. Many physical and chemical methods such as coagulation, precipitation, and oxidation have been used for dye removal from water [3]. Adsorption has been described in order to eliminate or lower concentration of a wide range of dissolved pollutants (organic or inorganic) in the effluent [4]. Dye removal by different sorbents was evaluated [5, 6]. Activated carbon is the most widely used adsorbent for this purpose. It has high capacity for adsorption of organic maters, but its uses are limited, because of its high cost [7, 8]. This has led to search for cheaper sorbents such as mineral clays [9–12], sawdust [13–16], and so on. Recently, various kinds of activated carbon have been achieved from different agriculture wastes and used as low-cost sorbents for removal of heavy metals, organic

References

[1]  S. Hashemian and A. Forighimoghadam, “Effect of copper doping on CoTiO3 ilmenite type nanoparticles for removal of congo red from aqueous solution,” Chemical Engineering Journal, vol. 235, pp. 299–306, 2014.
[2]  G. McKay, “Adsorption of dyestuffs from aqueous solutions with activated carbon—1. equilibrium and batch contact-time studies,” Journal of Chemical Technology and Biotechnology, vol. 32, no. 8, pp. 759–772, 1982.
[3]  P. Nigam, I. M. Banat, D. Singh, and R. Marchant, “Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes,” Process Biochemistry, vol. 31, no. 5, pp. 435–442, 1996.
[4]  V. K. Gupta and S. Suhas, “Application of low-cost adsorbents for dye removal—a review,” Journal of Environmental Management, vol. 90, no. 8, pp. 2313–2342, 2009.
[5]  P. Velmurugan, V. Rathinakumar, and G. Dhinakaran, “Dye removal from aqueous solution using low cost adsorbent,” International Journal of Environmental Sciences, vol. 1, no. 7, pp. 1492–1503, 2011.
[6]  M. M. Sundaram and S. Sivakumar, “Use of indian almond shell waste and groundnut shell waste for the removal of azure a dye from aqueous solution,” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 4, pp. 2047–2054, 2012.
[7]  M. Aliabadi, I. Khazaei, M. Hajiabadi, and S. Fazel, “Removal of rhodamine B from aqueous solution by almond shell biosorbent,” Journal of Biodiversity and Environmental Sciences, vol. 2, no. 9, pp. 39–44, 2012.
[8]  B. K. Singh and N. S. Rawat, “Comparative sorption equilibrium studies of toxic phenols on flyash and impregnated flyash,” Journal of Chemical Technology and Biotechnology, vol. 61, no. 4, pp. 307–317, 1994.
[9]  S. Hong and C. Ning, “Adsorption of Cr(VI) on Fe-Ni modified bentonites,” Environmental Engineering and Management Journal, vol. 10, no. 7, pp. 875–879, 2011.
[10]  M. H. Koppelman and J. G. Dillard, “A study of the adsorption of Ni(II) and Cu(II) by clay minerals,” Clays and Clay Minerals, vol. 25, no. 6, pp. 457–462, 1977.
[11]  S. Hashemian, “Removal of acid red 151 from water by adsorption onto nano-composite MnFe2O4/kaolin,” Main Group Chemistry, vol. 10, no. 2, pp. 105–114, 2011.
[12]  S. Hashemian, “MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138,” African Journal of Biotechnology, vol. 9, no. 50, pp. 8667–8671, 2010.
[13]  S. Hashemian and M. Mirshamsi, “Kinetic and thermodynamic of adsorption of 2-picoline by sawdust from aqueous solution,” Journal of Industrial and Engineering Chemistry, vol. 18, pp. 2010–2015, 2012.
[14]  S. Hashemian, “Modified sawdust for removal of methyl violet (basic dye) from aqueous solutions,” Asian Journal of Chemistry, vol. 21, no. 5, pp. 3622–3630, 2009.
[15]  A. Habib, N. Islam, and A. M. S. Alam, “Removal of copper from aqueous solution using orange peel, sawdust and bagasse,” Pakistan Journal of Analytical and Environmental Chemistry, vol. 8, no. 2, pp. 21–25, 2007.
[16]  A. E. Ofomaja, “Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust,” Chemical Engineering Journal, vol. 143, no. 1–3, pp. 85–95, 2008.
[17]  D. H. Lataye, I. M. Mishra, and I. D. Mall, “Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): parametric, kinetic, equilibrium and thermodynamic aspects,” Journal of Hazardous Materials, vol. 154, no. 1–3, pp. 858–870, 2008.
[18]  D. Mohan, K. P. Singh, S. Sinha, and D. Gosh, “Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials,” Carbon, vol. 43, no. 8, pp. 1680–1693, 2005.
[19]  J. M. Salman, V. O. Njoku, and B. H. Hameed, “Adsorption of pesticides from aqueous solution onto banana stalk activated carbon,” Chemical Engineering Journal, vol. 174, no. 1, pp. 41–48, 2011.
[20]  I. Bhatti, K. Qureshi, R. A. Kazi, and A. K. Ansari, “Preparation and characterization of chemically activated almond shell by optimization of adsorption parameters for removal of chromium (VI) from aqueous solution,” International Journal of Chemical and Biological Engineering, vol. 1, no. 3, pp. 149–154, 2008.
[21]  A. Khaled, A. E. Nemr, A. El-Sikaily, and O. Abdelwahab, “Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 100–110, 2009.
[22]  G. Annadurai, R. S. Juang, and D. J. Lee, “Adsorption of heavy metals from water using banana and orange peels,” Water Science and Technology, vol. 47, no. 1, pp. 185–190, 2003.
[23]  W. Shan, D. Fang, Z. Zhao et al., “Application of orange peel for adsorption separation of molybdenum(VI) from Re-containing industrial effluent,” Biomass and Bioenergy, vol. 37, pp. 289–297, 2012.
[24]  A. E. Nemr, O. Abdelwahab, A. El-Sikaily, and A. Khaled, “Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel,” Journal of Hazardous Materials, vol. 161, no. 1, pp. 102–110, 2009.
[25]  S. Liang, X. Guo, N. Feng, and Q. Tian, “Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions,” Journal of Hazardous Materials, vol. 170, no. 1, pp. 425–429, 2009.
[26]  M. Deraman, I. A. Talib, M. Ramli Omar, H. H. J. Jumali, E. Taer, and M. M. Saman, “Microcrystallite dimension and total active surface area of carbon electrode from mixtures of Pre-Carbonized oil palm empty fruit bunches and green petroleum cokes,” Sains Malaysiana, vol. 39, no. 1, pp. 83–86, 2010.
[27]  K. Kumar, R. K. Saxena, R. Kothari, D. K. Suri, N. K. Kaushik, and J. N. Bohra, “Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth,” Carbon, vol. 35, no. 12, pp. 1842–1844, 1997.
[28]  G. Annadurai, R.-S. Juang, and D.-J. Lee, “Use of cellulose-based wastes for adsorption of dyes from aqueous solutions,” Journal of Hazardous Materials, vol. 92, no. 3, pp. 263–274, 2002.
[29]  C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, and K. Ranganathan, “Removal of dyes from aqueous solutions by cellulosic waste orange peel,” Bioresource Technology, vol. 57, no. 1, pp. 37–43, 1996.
[30]  R. Sivaraj, C. Namasivayam, and K. Kadirvelu, “Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions,” Waste Management, vol. 21, no. 1, pp. 105–110, 2001.
[31]  M. Arami, N. Y. Limaee, N. M. Mahmoodi, and N. S. Tabrizi, “Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies,” Journal of Colloid and Interface Science, vol. 288, no. 2, pp. 371–376, 2005.
[32]  F. Doulati Ardejani, K. Badii, N. Yousefi Limaee et al., “Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile effluents using orange peel, a low-cost adsorbent,” Dyes and Pigments, vol. 73, no. 2, pp. 178–185, 2007.
[33]  S. Hashemian, “Kinetic and thermodynamic of adsorption of methylene blue (MB) by CuFe2O4/rice bran composite,” International Journal of Physical Sciences, vol. 6, no. 27, pp. 6257–6267, 2011.
[34]  S. Hashemian and M. Salimi, “Nano composite a potential low cost adsorbent for removal of cyanine acid,” Chemical Engineering Journal, vol. 188, pp. 57–63, 2012.
[35]  S. Lagergren, “Zur theorie der sogenannten adsorption geloster stoffe Kungliga Svenska Vetenskapsakademiens,” Handlingar, vol. 24, pp. 1–39, 1898.
[36]  Y. S. Ho, G. McKay, D. A. J. Wase, and C. F. Forster, “Study of the sorption of divalent metal ions on to peat,” Adsorption Science and Technology, vol. 18, no. 7, pp. 639–650, 2000.
[37]  M. Do?an, Y. ?zdemir, and M. Alkan, “Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite,” Dyes and Pigments, vol. 75, no. 3, pp. 701–713, 2007.
[38]  D. Ozdes, A. Gundogdu, C. Duran, and H. B. Senturk, “Evaluation of adsorption characteristics of malachite green onto almond shell (prunus dulcis),” Separation Science and Technology, vol. 45, no. 14, pp. 2076–2085, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413