全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dose Dependence of Mechanoluminescence Properties in MgAl2O4: Dy Phosphor

DOI: 10.1155/2013/930818

Full-Text   Cite this paper   Add to My Lib

Abstract:

A reliable dosimetry is fundamental for quality assurance of the processes and irradiation products. All dosimetric systems for high doses have some limitation with regard to their use. Dosimetric system should be easy to use, fast to measure, and of low cost. Good phosphor which shows high luminescence properties may fulfil the above criteria in some way. MgAl2O4: Dy phosphor has been prepared by solution combustion technique and confirmed with the help of XRD. ML has been excited impulsively by dropping a load of mass 0.7?kg onto the phosphors from various heights; two distinct ML peaks are observed for all the samples. It is observed that MgAl2O4: Dy phosphor shows linear response to gamma-ray dose and low fading which can be used for dosimetric purpose. 1. Introduction Dosimeters have to measure accurately radiation intensities. Their applications include personnel monitoring, environmental monitoring, radiation therapy, diagnostic radiology, and other radiation measurements. Ionization chambers measure directly intensities of ionizing radiation. For many applications, such as personnel and environmental monitoring, the absorbed energy has to be stored for long periods. This is done by suitable storing element fading of luminescence. The longer a phosphor stands after the excitation, the more trapped carriers will leave the traps, and the subsequently measured luminescence peaks will be weaker. Ionizing radiation is a technique widely employed in last decades. It was used for a long time for many applications such as sterilization of medical devices. Rare earth doped phosphors have a vital role as radiation detectors in many fields of fundamental and applied research, such as clinical, personal, and environmental monitoring of ionizing radiation [1, 2]. Various methods of preparation have also been developed for easy synthesis of these materials to make them available easily. While irradiation usually leads to the creation of structural defects, the healing effect of irradiation is also known [3]. Metals made of powders preliminary irradiated by electrons or gamma irradiations are characterized by the absence of big pores and fine homogeneous grain structure. The average sizes of grains are 4-5 times lower than that in conventional technology [4]. Ionising radiation has been found to be widely applicable in modifying the structure and properties of polymers and can be used to tailor the performance of either bulk materials or surfaces. Improved luminescent characteristics of some of aluminates have also found their place in optoelectronics. The

References

[1]  S. J. Dhoble, “Preparation of (K:Eu) NaSO4 phosphor for lyoluminescence dosimetry of ionising radiation,” Radiation Protection Dosimetry, vol. 100, no. 1–4, pp. 285–287, 2002.
[2]  N. D. Yordanov and Y. Karakirova, “EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry,” Radiation Measurements, vol. 42, no. 3, pp. 347–351, 2007.
[3]  R. L. Clough, “High-energy radiation and polymers: a review of commercial processes and emerging applications,” Nuclear Instruments and Methods in Physics Research B, vol. 185, pp. 8–33, 2001.
[4]  Y. A. Zaykin and B. A. Aliyev, “Radiation effects in high-disperse metal media and their application in powder metallurgy,” Radiation Physics and Chemistry, vol. 63, no. 3–6, pp. 227–230, 2002.
[5]  F. Daniels, C. A. Boyd, and D. F. Saunders, “Thermoluminescence as a research tool,” Science, vol. 117, no. 3040, pp. 343–349, 1953.
[6]  A. J. J. Bos, “High sensitivity thermoluminescence dosimetry,” Nuclear Instruments and Methods in Physics Research B, vol. 184, pp. 3–28, 2001.
[7]  R. P. Yavetskiy, E. F. Dolzhenkova, A. V. Tolmachev, S. V. Parkhomenko, V. N. Baumer, and A. L. Prosvirnin, “Radiation defects in SrB4O7:Eu2+ crystals,” Journal of Alloys and Compounds, vol. 441, no. 1-2, pp. 202–205, 2007.
[8]  T. E. Schlesinger, J. E. Toney, H. Yoon et al., “Cadmium zinc telluride and its use as a nuclear radiation detector material,” Materials Science and Engineering R, vol. 32, no. 4-5, pp. 103–189, 2001.
[9]  W. L. McLaughlin, A. W. Boyed, K. C. Chadwich, J. C. Mcdonald, and A. Miller, Dosimetry for Radiation Processing, Taylor & Francis, London, UK, 1989.
[10]  T. Nakajima and T. Otsuki, “Dosimetry for radiation emergencies: radiation-induced free radicals in sugar of various countries and the effect of pulverizing on the ESR signal,” Applied Radiation and Isotopes, vol. 41, no. 4, pp. 359–365, 1990.
[11]  T. Nakajima, “ESR of sugar as a personnel monitor for radiation emergencies,” Applied Radiation and Isotopes, vol. 46, no. 8, pp. 819–825, 1995.
[12]  A. Tchen, C. L. Greenstock, and A. Trivedi, “The use of sugar pellets in ESR dosimetry,” Radiation Protection Dosimetry, vol. 46, no. 2, pp. 119–121, 1993.
[13]  N. A. Atari and K. V. Ettinger, “Lyoluminescence of irradiated saccharides,” Radiation Effects, vol. 20, no. 1-2, pp. 135–139, 1973.
[14]  T. Nickel, E. Pitt, and A. Scharmann, “Lyoluminescence dosimetry with a sugar after accidental gamma ray exposure,” Radiation Protection Dosimetry, vol. 35, no. 3, pp. 173–177, 1991.
[15]  A. J. Walton, “Triboluminescence,” Advances in Physics, vol. 26, no. 6, pp. 887–948, 1977.
[16]  G. Alzetta, I. Chudasek, and R. Scarmozzino, “Excitation of triboluminescence by deformation of single crystals,” Physica Status Solidi A, vol. 1, no. 4, pp. 775–785, 1970.
[17]  Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature, vol. 346, no. 6285, pp. 641–643, 1990.
[18]  T. Matsuzawa, Y. Aokiy, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2 O4:?Eu2+,?Dy3+,” Journal of the Electrochemical Society, vol. 143, pp. 2670–2673, 1996.
[19]  R. Dekkers and C. F. Woensdregt, “Crystal structural control on surface topology and crystal morphology of normal spinel (MgAl2O4),” Journal of Crystal Growth, vol. 236, no. 1–3, pp. 441–454, 2002.
[20]  C. Baudín, R. Martínez, and P. Pena, “High-temperature mechanical behavior of stoichiometric magnesium spinel,” Journal of the American Ceramic Society, vol. 78, pp. 1857–1862, 1995.
[21]  M. Sindel, N. A. Travitzky, and N. Claussen, “Influence of magnesium-aluminum spinel on the directed oxidation of molten aluminum alloys,” Journal of the American Ceramic Society, vol. 73, pp. 2615–2618, 1990.
[22]  J. T. Baitley and R. Russell, “Sintered spinel ceramics,” Journal of the American Ceramic Society, vol. 47, pp. 1025–1029, 1968.
[23]  C. C. Wang, “Growth and characterization of spinel single crystals for substrate use in integrated electronics,” Journal of Applied Physics, vol. 40, no. 9, pp. 3433–3444, 1969.
[24]  K. Petermann, R. Clausen, E. Heumann, and M. Ledig, “Time resolved excited state absorption of Mn2+,” Optics Communications, vol. 70, no. 6, pp. 483–486, 1989.
[25]  R. Clausen and K. Petermann, “Mn/sup 2+/ as a potential solid-state laser ion,” IEEE Journal of Quantum Electronics, vol. 24, no. 6, pp. 1114–1117, 1988.
[26]  C. Wyon, J. J. Aubert, and F. Auzel, “Czochralski growth and optical properties of magnesium-aluminium spinel doped with nickel,” Journal of Crystal Growth, vol. 79, no. 1–3, pp. 710–713, 1986.
[27]  A. Jouini, A. Yoshikawa, A. Brenier, T. Fukuda, and G. Boulon, “Optical properties of transition metal ion-doped MgAl2O4 spinel for laser application,” Physica Status Solidi C, vol. 4, no. 3, pp. 1380–1383, 2007.
[28]  E. A. Raja, B. Dhabekar, S. Menon, S. P. More, T. K. G. Rao, and R. K. Kher, “Role of defect centres in thermoluminescence mechanism of Tb 3+doped MgAl2O4,” Indian Journal of Pure and Applied Physics, vol. 47, no. 6, pp. 420–425, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133