全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Alternative Route for Synthesis of Chiral 4-Substituted 1-Arenesulfonyl-2-imidazolidinones: Unusual Utility of (4S,5S)- and (4R,5R)-4,5-Dimethoxy-2-imidazolidinones and X-Ray Crystallography

DOI: 10.1155/2013/349519

Full-Text   Cite this paper   Add to My Lib

Abstract:

An unusual synthesis of (S)-1-arenesulfonyl-4-(1-adamantyl)-2-imidazolidinones 15a–d and (R)-1-arenesulfonyl-4-tert-butyl-2-imidazolidinones 19a–d has been developed from trans-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinones 6 and 7 as chiral synthons. Diastereomerically pure trans-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinones 6 and 7 were successfully subjected to regioselective reduction using bulky organocuprates that afforded 1-apocamphanecarbonyl-5-methoxy-2-imidazolidinones 10 and 11. This new finding was used for synthesis of chiral 4-substituted 2-imidazolidinones 15a–d and 19a–d through the corresponding intermediates 13 and 17 by treatment with steric bulky tert-butylcuprate or 1-adamantylcuprate. 1. Introduction Methods involving the use of heterocyclic chiral auxiliaries have been very successful for a wide range of asymmetric transformations [1–5]. Chiral 2-imidazolidinones [4, 5] have been described as chiral auxiliaries for use in diastereocontrolled reactions and a number of enantiopure 2-imidazolidinones [6–8]. The most direct route for synthesis of 2-imidazolidinones is from the corresponding 1,2-diamines via carbonylation with phosgene or its synthetic equivalents [9]. The application of the 2-imidazolidinones in asymmetric synthesis requires that it should be readily available on a useful scale and preferably in both enantiomeric forms. A route to obtain optically active 4-tert-butyl-2-imidazolidinones 3 and 4-(1-adamantyl)-2-imidazolidinones 4 from a 2-imidazolidinone heterocycle has been described. The method involves the conversion of 4-methoxy-2-imidazolidinones 1, using organocuprates (tert-butylcuprate, 1-adamantylcuprate, phenylcuprate, and benzylcuprate), into 4-alkyl- and 4-aryl-derivatives 2, followed by optical resolution through either a stoichiometric or catalytic process (Scheme 1) [10]. It was also reported that (4S,5S)- and (4R,5R)-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinones (DMIm 6, 7) are good candidates as chiral synthons. (DMIm 6, 7) could be used for the chiral synthesis of 1,2-diamino acids 8, sterically congested 1,2-diamines 9 [11] (Scheme 2), and for synthesis of biological active molecules [12, 13]. Scheme 1: General method for optical resolution of 4-substituted 2-imidazolidinones. Scheme 2: The utility of DMIm 6 and 7 for the synthesis of 1,2-diamino acids 8 and -symmetric 1,2-diamines 9. 2. Results and Discussion We now describe the conversion of (4S,5S)-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinone 6 and (4R,5R)-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinones 7

References

[1]  D. A. Evans, “Studies in asymmetric synthesis: the develeopment of practical chiral enolate synthons,” Aldrichimica Acta, vol. 15, pp. 23–32, 1982.
[2]  D. J. Ager, I. Prakash, and D. R. Schaad, “1, 2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis,” Chemical Reviews, vol. 96, no. 2, pp. 835–876, 1996.
[3]  D. J. Ager, I. Prakash, and D. R. Schaad, “Chiral oxazolidinones in asymmetric synthesis,” Aldrichimica Acta, vol. 30, pp. 3–12, 1997.
[4]  T. S. Powers, W. Jiang, J. Su, W. D. Wulff, B. E. Waltermire, and A. L. Rheingold, “Asymmetric exo-selective diels-alder reactions by steric attenuation of secondary orbital interactions,” Journal of the American Chemical Society, vol. 119, no. 27, pp. 6438–6439, 1997.
[5]  P. S. van Heerden, B. C. B. Bezuidenhoubt, and D. Ferreira, “Dibutylboron triflate promoted conjugate addition of benzylic and allylic organocopper reagents to chiral alpha, beta-unsaturated N-acyl imidazolidinones,” Tetrahedron Letters, vol. 38, no. 10, pp. 1821–1824, 1997.
[6]  F. M. Rossi, E. T. Powers, R. Yoon, L. Rosenberg, and J. Meinwald, “Preparation of 2, 3-diamino acids: stereocontrolled synthesis of an aminated analog of the taxol side chain,” Tetrahedron, vol. 52, no. 31, pp. 10279–10286, 1996.
[7]  E. Fernandez-Megia, M. M. Paz, and F. J. Sardina, “On the stereoselectivity of the reaction of N-(9-phenylfluoren-9-yl)aspartate enolates with electrophiles: synthesis of enantiomerically pure 3-hydroxy-, 3-amino-, and 3-hydroxy-3-methylaspartates,” Journal of Organic Chemistry, vol. 59, pp. 7643–7652, 1994.
[8]  E. Bruni, G. Cardillo, M. Orena, S. Sandri, and C. Tomasini, “Synthesis of chiral 1, 2-diamines,” Tetrahedron Letters, vol. 30, no. 13, pp. 1679–1682, 1989.
[9]  H. J. Kn?lker and T. Braxmeier, “Isocyanates, part 5 synthesis of chiral oxazolidin-2-ones and imidazolidin-2-ones via DMAP-catalyzed isocyanation of amines with di-tert-butyl dicarbonate,” Tetrahedron Letters, vol. 39, no. 51, pp. 9407–9410, 1998.
[10]  A. A.-M. Abdel-Aziz, J. Okuno, S. Tanaka, T. Ishizuka, H. Matsunaga, and T. Kunieda, “An unusual enhancement of chiral induction by chiral 2-imidazolidinone auxiliaries,” Tetrahedron Letters, vol. 41, no. 44, pp. 8533–8537, 2000.
[11]  A. A.-M. Abdel-Aziz, S. A. A. El Bialy, F. E. Goda, and T. Kunieda, “Enantioselective synthesis of (1S,2S)-1,2-di-tert-butyl and (1R,2R)-1,2-di-(1-adamantyl)ethylenediamines,” Tetrahedron Letters, vol. 45, no. 43, pp. 8073–8077, 2004.
[12]  R. Seo, T. Ishizuka, A. A. M. Abdel-Aziz, and T. Kunieda, “Versatile chiral synthons for 1,2-diamines: (4S,5S)- and (4R,5R)-4,5-dimethoxy-2-imidazolidinones,” Tetrahedron Letters, vol. 42, no. 36, pp. 6353–6355, 2001.
[13]  A. A.-M. Abdel-Aziz, A. S. El-Azab, H. I. El-Subbagh, A. M. Al-Obaid, A. M. Alanazi, and M. A. Al-Omar, “Design, synthesis, single-crystal and preliminary antitumor activity of novel arenesulfonylimidazolidin-2-ones,” Bioorganic and Medicinal Chemistry Letters, vol. 22, no. 5, pp. 2008–2014, 2012.
[14]  A. A.-M. Abdel-Aziz, H. I. El-Subbagh, and T. Kunieda, “Lewis acid-promoted transformation of 2-alkoxypyridines into 2-aminopyridines and their antibacterial activity. Part 2: remarkably facile C–N bond formation,” Bioorganic and Medicinal Chemistry, vol. 13, no. 16, pp. 4929–4935, 2005.
[15]  P. Canonne, G. B. Foscolos, and G. Lemay, “Effet du benzene dans la reaction de grignard sur les cetones encombrees,” Tetrahedron Letters, vol. 20, no. 45, pp. 4383–4386, 1979.
[16]  F. A. Carey and R. J. Sundberg, “Organometallic compounds of group I and II metals,” in Advanced Organic Chemistry, pp. 619–667, Springer, New York, NY, USA, 5th edition, 2007.
[17]  D. O. Cowan and H. Mosher, “Comparison of the reactions of grignard reagents and dialkylmagnesium compounds in addition, reduction, and enolization reactions,” Journal of Organic Chemistry, vol. 27, pp. 1–5, 1962.
[18]  A. F. Parsons and R. M. Pettifer, “A radical approach to N-desulfonylation,” Tetrahedron Letters, vol. 37, no. 10, pp. 1667–1670, 1996.
[19]  I. A. Al-Swaidan, A. S. El-Azab, A. M. Alanazi, and A. A.-M. Abdel-Aziz, “Synthesis and conformational analysis of sterically congested (4R)-(-)-1-(2, 4, 6-trimethylbenzenesulfonyl)-3-n-butyryl-4-tert-butyl-2-imidazolidinone: X-ray crystallography and semiempirical calculations,” Journal of Chemistry. In press.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413