全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Species Favourability Shift in Europe due to Climate Change: A Case Study for Fagus sylvatica L. and Picea abies (L.) Karst. Based on an Ensemble of Climate Models

DOI: 10.1155/2013/787250

Full-Text   Cite this paper   Add to My Lib

Abstract:

Climate is the main environmental driver determining the spatial distribution of most tree species at the continental scale. We investigated the distribution change of European beech and Norway spruce due to climate change. We applied a species distribution model (SDM), driven by an ensemble of 21 regional climate models in order to study the shift of the favourability distribution of these species. SDMs were parameterized for 1971–2000, as well as 2021–2050 and 2071–2100 using the SRES scenario A1B and three physiological meaningful climate variables. Growing degree sum and precipitation sum were calculated for the growing season on a basis of daily data. Results show a general north-eastern and altitudinal shift in climatological favourability for both species, although the shift is more marked for spruce. The gain of new favourable sites in the north or in the Alps is stronger for beech compared to spruce. Uncertainty is expressed as the variance of the averaged maps and with a density function. Uncertainty in species distribution increases over time. This study demonstrates the importance of data ensembles and shows how to deal with different outcomes in order to improve impact studies by showing uncertainty of the resulting maps. 1. Introduction Climate change affects tree species because trees are sessile, long lived, and comparatively slow in reacting to a changing environment, for example, trees cannot easily colonize new habitats in a strongly fragmented landscape. Because of the slow growth rates of trees to reach maturity, the typical planning horizon in the forestry sector is, for example, for spruce 60 to 80 years in the future. Hence, forestry has to deal with the challenges of a rapidly changing environment in order to avoid breakdown of stands. The same is true for city planners or municipal authorities with regard to tree species. Therefore, forest owners and related professionals need a reliable assessment about shifts of species distribution in order to make management decisions [1]. Even though genetic resources are considered as a key factor of forest ecosystems to adapt to climate change [2], one has to keep in mind that adaptation processes are slow, that niche conservatism is described for some genera [3], and that species will not survive or at least will not have a positive population growth rate if environmental conditions at a site will not meet the physiological requirement of a species. Species distribution models (SDMs) can be used to gain ecological insights and to predict distributions across landscapes and to

References

[1]  M. Hanewinkel, S. Hummel, and D. A. Cullmann, “Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany,” Forest Ecology and Management, vol. 259, no. 4, pp. 710–719, 2010.
[2]  S. Kapeller, M. J. Lexer, T. Geburek, J. Hiebl, and S. Schueler, “Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate,” Forest Ecology and Management, vol. 271, pp. 46–57, 2012.
[3]  B. Huntley, P. J. Bartlein, and I. C. Prentice, “Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America,” Journal of Biogeography, vol. 16, no. 6, pp. 551–560, 1989.
[4]  J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” Journal of Animal Ecology, vol. 77, no. 4, pp. 802–813, 2008.
[5]  B. Huntley, P. M. Berry, W. Cramer, and A. P. McDonald, “Modelling present and potential future ranges of some European higher plants using climate response surfaces,” Journal of Biogeography, vol. 22, no. 6, pp. 967–1001, 1995.
[6]  C. Coudun, J.-C. Gégout, C. Piedallu, and J.-C. Rameau, “Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France,” Journal of Biogeography, vol. 33, no. 10, pp. 1750–1763, 2006.
[7]  A. Bolte, T. Czajkowski, and T. Kompa, “The north-eastern distribution range of European beech—a review,” Forestry, vol. 80, no. 4, pp. 413–429, 2007.
[8]  C. Liu, P. M. Berry, T. P. Dawson, and R. G. Pearson, “Selecting thresholds of occurrence in the prediction of species distributions,” Ecography, vol. 28, no. 3, pp. 385–393, 2005.
[9]  R. Real, A. M. Barbosa, and J. M. Vargas, “Obtaining environmental favourability functions from lo-gistic regression,” Environmental and Ecological Statistics, vol. 13, no. 2, pp. 237–245, 2006.
[10]  G. von Wühlisch, “EUFORGEN technical guidelines for genetic conservation and use for European beech (Fagus sylvatica),” Tech. Rep., Bioversity International, Rome, Italy, 2008.
[11]  T. Skr?ppa, “EURFORGEN technical guidelines for genetic conservation and use for Norway spruce (Picea abies),” Tech. Rep., International Plant Genetic Resources Institute, Rome, Italy, 2003.
[12]  F. Went, “The effect of temperature on plant growth,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 4, pp. 347–362, 1953.
[13]  P. van der Linden and J. Mitchell, “ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project,” Tech. Rep., Met Office Hadley Centre, London, UK, 2009.
[14]  D. Jacob, K. Bulow, L. Kotova, C. Moseley, J. Perterson, and D. Rechid, “CSC—Report 6: Regionale Klimaprojektionen für Europa und Deutschland: Ensembles-Simulationen für die Klimafolgenforschung,” Tech. Rep., Climate Service Center (CSC), 2012.
[15]  A. Menzel, T. H. Sparks, N. Estrella et al., “European phenological response to climate change matches the warming pattern,” Global Change Biology, vol. 12, no. 10, pp. 1969–1976, 2006.
[16]  N. Estrella, T. H. Sparks, and A. Menzel, “Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe,” Climate Research, vol. 39, no. 3, pp. 235–248, 2009.
[17]  R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, “Very high resolution interpolated climate surfaces for global land areas,” International Journal of Climatology, vol. 25, no. 15, pp. 1965–1978, 2005.
[18]  P. Brohan, J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, “Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850,” Journal of Geophysical Research, vol. 111, no. D12, Article ID D12106, 2006.
[19]  C. D. Hewitt, “The ensembles project: providing ensemble-based predictions of climate changes and their impacts,” The Eggs Newsletter, vol. 13, pp. 22–25, 2005.
[20]  A. Jiménez-Valverde and J. M. Lobo, “Threshold criteria for conversion of probability of species presence to either-or presence-absence,” Acta Oecologica, vol. 31, no. 3, pp. 361–369, 2007.
[21]  R. J. Hijmans and C. H. Graham, “The ability of climate envelope models to predict the effect of climate change on species distributions,” Global Change Biology, vol. 12, no. 12, pp. 2272–2281, 2006.
[22]  A. P. Weigel, R. Knutti, M. A. Liniger, and C. Appenzeller, “Risks of model weighting in multimodel climate projections,” Journal of Climate, vol. 23, no. 15, pp. 4175–4191, 2010.
[23]  IPCC, “IPCC special report emission scenarios: summary for policymakers: a special report of IPCC working group III,” Tech. Rep., Intergovernmental Panel on Climate Change, 2000.
[24]  M. Hanewinkel, D. A. Cullmann, M. J. Schelhaas, G. J. Nabuurs, and N. E. Zimmermann, “Climate change may cause severe loss in the economic value of European forest land,” Nature Climate Change, vol. 3, pp. 203–207, 2013.
[25]  M. R. Haylock, N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New, “A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006,” Journal of Geophysical Research D, vol. 113, no. 20, Article ID D20119, 2008.
[26]  U. Schulzweida, L. Kornblueh, and R. Quast, Climate Data Operators. User's Guide, MPI for Meteo-rology Brockmann Consult, 2009.
[27]  M. Lorenz, “International co-operative programme on assessment and monitoring of air pollution effects on forests—ICP forests,” Water, Air, and Soil Pollution, vol. 85, no. 3, pp. 1221–1226, 1995.
[28]  A. H. Hirzel and G. Le Lay, “Habitat suitability modelling and niche theory,” Journal of Applied Ecology, vol. 45, no. 5, pp. 1372–1381, 2008.
[29]  P. L. Zarnetske, T. C. Edwards Jr., and G. G. Moisen, “Habitat classification modeling with incomplete data: pushing the habitat envelope,” Ecological Applications, vol. 17, no. 6, pp. 1714–1726, 2007.
[30]  U. Bohn and R. Neuh?usl, “Interaktive CD-ROM zur Karte der natürlichen Vegetation Europas/In-teractive CD-Rom Map of the Natural Vegetation of Europe.Mafistab/Scale 1:2 500 000. Teil 1: Erl?uterungstext mit CD-ROM, Teil 2: Legende, Teil 3: Karten,” Tech. Rep., Landwirtschaftsverlag, Münster, Germany, 2003.
[31]  T. Hastie and R. Tibshirani, Generalized Additive Models, Chapman and Hall, 1990.
[32]  S. N. Wood and N. H. Augustin, “GAMs with integrated model selection using penalized regression splines and applications to environmental modelling,” Ecological Modelling, vol. 157, no. 2-3, pp. 157–177, 2002.
[33]  S. Wood, “Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation,” 2012.
[34]  S. Wood, Generalized Additive Models: An Introduction With R, vol. 66, CRC Press, 2006.
[35]  K. H. Mellert, V. Fensterer, H. Küchenhoff et al., “Hypothesis-driven species distribution models for tree species in the Bavarian Alps,” Journal of Vegetation Science, vol. 22, no. 4, pp. 635–646, 2011.
[36]  E. A. Freeman and G. Moisen, “PresenceAbsence: an R package for PresenceAbsence analysis,” Journal of Statistical Software, vol. 23, no. 11, pp. 1–31, 2008.
[37]  A. H. Fielding and J. F. Bell, “A review of methods for the assessment of prediction errors in conservation presence/absence models,” Environmental Conservation, vol. 24, no. 1, pp. 38–49, 1997.
[38]  M. B. Araújo and M. New, “Ensemble forecasting of species distributions,” Trends in Ecology & Evolution, vol. 22, no. 1, pp. 42–47, 2007.
[39]  M. Marmion, M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller, “Evaluation of consensus methods in predictive species distribution modelling,” Diversity and Distributions, vol. 15, no. 1, p. 59, 2009.
[40]  W. Thuiller, B. Lafourcade, R. Engler, and M. B. Araújo, “BIOMOD-a platform for ensemble forecast-ing of species distributions,” Ecography, vol. 32, no. 3, pp. 369–373, 2009.
[41]  T. Wang, E. M. Campbell, G. A. O'Neill, and S. N. Aitken, “Projecting future distributions of ecosys-tem climate niches: uncertainties and management applications,” Forest Ecology and Management, vol. 279, pp. 128–140, 2012.
[42]  P. Lorenz and D. Jacob, “Validation of temperature trends in the ENSEMBLES regional climate model runs driven by ERA40,” Climate Research, vol. 44, no. 2-3, pp. 167–177, 2010.
[43]  M. Marmion, M. Luoto, R. K. Heikkinen, and W. Thuiller, “The performance of state-of-the-art modelling techniques depends on geographical distribution of species,” Ecological Modelling, vol. 220, no. 24, pp. 3512–3520, 2009.
[44]  W. Falk and K. H. Mellert, “Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria,” Journal of Vegetation Science, vol. 22, no. 4, pp. 621–634, 2011.
[45]  A. Menzel, Ph?nologie von Waldb?umen unter sich ?ndernden Klimabedingungen: Auswertung der Beobachtungen in den internationalen ph?nologischen G?rten und M?glichkeiten der Modellierung von Ph?nodaten [Ph.D. thesis], Technical University München, München, Germany, 1997.
[46]  A. Menzel and P. Fabian, “Growing season extended in Europe,” Nature, vol. 397, no. 6721, p. 659, 1999.
[47]  S. Solberg, “Summer drought: a driver for crown condition and mortality of Norway spruce in Norway,” Forest Pathology, vol. 34, no. 2, pp. 93–104, 2004.
[48]  K. von Wilpert, Die Jahrringstruktur von Fichten in Abh?ngigkeit vom Bodenwasserhaushalt auf Pseudogley und Parabraunerde. Ein Methodenkonzept zur Erfassung standortsspezifischer Wasserstre?disposition [Ph.D. thesis], Institut für Bodenkunde und Waldern?hrungslehre der Albert-Ludwigs-Universit?t, Freiburg im Breisgau, Germany, 1990.
[49]  R. Man and P. Lu, “Effects of thermal model and base temperature on estimates of thermal time to bud break in white spruce seedlings,” Canadian Journal of Forest Research, vol. 40, no. 9, pp. 1815–1820, 2010.
[50]  M. Hannerz, “Evaluation of temperature models for predicting bud burst in Norway spruce,” Canadian Journal of Forest Research, vol. 29, no. 1, pp. 9–19, 1999.
[51]  M. B. Araújo and A. T. Peterson, “Uses and misuses of bioclimatic envelope modeling,” Ecology, vol. 93, no. 7, pp. 1527–1539, 2012.
[52]  L. Iverson, A. Prasad, S. Matthews, and M. Peters, “Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change,” Ecosystems, vol. 14, pp. 1005–1020, 2011.
[53]  R. Hiederer, E. Micheli, and T. Durrant, Evaluation of Biosoil. Demonstration Project. Soil Data Analysis, European Union, 2011.
[54]  N. E. Zimmermann, N. G. Yoccoz, T. C. Edwards Jr. et al., “Climatic extremes improve predictions of spatial patterns of tree species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 2, pp. 19723–19728, 2009.
[55]  A. Guisan, N. E. Zimmermann, J. Elith, C. H. Graham, S. Phillips, and A. T. Peterson, “What matters for predicting the occurrences of trees: techniques, data, or species' characteristics?” Ecological Monographs, vol. 77, no. 4, pp. 615–630, 2007.
[56]  M. Austin, “Spatial prediction of species distribution: an interface between ecological theory and statistical modelling,” Ecological Modelling, vol. 157, no. 2-3, pp. 101–118, 2002.
[57]  C. F. Randin, T. Dirnb?ck, S. Dullinger, N. E. Zimmermann, M. Zappa, and A. Guisan, “Are niche-based species distribution models transferable in space?” Journal of Biogeography, vol. 33, no. 10, pp. 1527–1539, 2006.
[58]  J. Elith, M. Kearney, and S. Phillips, “The art of modelling range-shifting species,” Methods in Ecology and Evolution, vol. 1, no. 4, pp. 330–342, 2010.
[59]  M. Kohler, J. Sohn, G. N?gele, and J. Bauhus, “Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning?” European Journal of Forest Research, vol. 129, pp. 1109–1118, 2010.
[60]  A. S. Jump, J. M. Hunt, and J. Penuelas, “Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica,” Global Change Biology, vol. 12, no. 11, pp. 2163–2174, 2006.
[61]  R. H. Moss, J. A. Edmonds, K. A. Hibbard et al., “The next generation of scenarios for climate change research and assessment,” Nature, vol. 463, no. 7282, pp. 747–756, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133