全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Climatic Variation at Thumba Equatorial Rocket Launching Station, India

DOI: 10.1155/2013/680565

Full-Text   Cite this paper   Add to My Lib

Abstract:

Long-term (45 years) diversified surface meteorological records from Thumba Equatorial Rocket Launching Station (TERLS), India, were collected and analysed to study the long-term changes in the overall climatology, climatology pertained to a particular observational time, mean daily climatology in temperature, inter-annual variability in temperature, interannual variability in surface pressure, and rainfall for the main Indian seasons—South West and North East monsoons and inter-annual mean monthly anomaly structure in temperature. Results on various analyses show strong and vivid features contributed by climate change for this South Peninsular Indian Arabian Sea Coastal Station, and this paper may be a first time venture which discusses climate change imparted perturbations in several meteorological parameters in different time domains, like a specific time, daily, monthly, and interannually over a station. Being a coastal rocket launching station, climatic change information is crucial for long-term planning of its facilities as well as for various rocket range operational demands. 1. Introduction Climate change refers to a statistically strong and significant variation in either the average state of the climate or in its variability, persisting for an extended period, typically in decades or longer. Short-period oscillations are statistically insignificant in the scenario of long-term climate change context. Climate change may be due to natural internal processes on earth (atmospheric, seismic, volcanic, and oceanic), external forces (variation in solar activity, rotation and revolution of earth), and more recently anthropogenic activities. It is now well established that anthropogenic activities cause intensification of the greenhouse effect and thereby contribute to the climate change. The paper by Oreskes [1] highlighted the listings in the ISI database on climate change from several abstracts published in refereed scientific journals between 1993 and 2003. In India, the first time document on the concern of greenhouse effect and possible mitigation measures was published in the Science Reporter, CSIR, by Ayyar [2]. Several papers were published in a special session in Current Science (volume 90, 2006) focussing the concerns over the socioeconomic and scientific aspects attributed to climate change on Indian scenario. To develop high-resolution climate change simulations over the Indian region, Providing Regional Climates for Impact Studies (PRECIS) modelling system was applied [3], and it was observed that the warming is monotonously widespread

References

[1]  N. Oreskes, “The scientific consensus on climatic change,” Science, vol. 306, p. 1686, 2004.
[2]  H. Ayyar, Effect of Pollution on Weather. Science Reporter. Council of Scientific and Industrial Research (CSIR), 1973.
[3]  K. Rupa Kumar, A. K. Sahai, K. Krishna Kumar et al., “High-resolution climate change scenarios for India for the 21st century,” Current Science, vol. 90, no. 3, pp. 334–345, 2006.
[4]  P. Brohan, J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, “Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850,” Journal of Geophysical Research D, vol. 111, no. 12, Article ID D12106, 2006.
[5]  T. M. Smith and R. W. Reynolds, “A global merged land-air-sea surface temperature reconstruction based on historical observations (1880–1997),” Journal of Climate, vol. 18, no. 12, pp. 2021–2036, 2005.
[6]  K. M. Lugina, P. Y. Groisman, K. Y. Vinnikov, V. V. Koknaeva, and N. A. Speranskaya, “Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881-2004 In Trends: a compendium of data on global change,” Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn, USA, 2005, http://cdiac.esd.ornl.gov/trends/temp/lugina/lugina.html.
[7]  J. Hansen, R. Ruedy, M. Sato et al., “A closer look at United States and global surface temperature change,” Journal of Geophysical Research D, vol. 106, no. 20, pp. 23947–23963, 2001.
[8]  S. Solomon, D. Quin, M. Manning, et al., “Contribution of working group I to the Fourth Assessment Report of the IPCC,” Tech. Rep. IPCC-AR4, 2007.
[9]  R. C. Balling Jr. and S. W. Brazel, “Recent changes in Phoenix, Arizona summertime diurnal precipitation patterns,” Theoretical and Applied Climatology, vol. 38, no. 1, pp. 50–54, 1987.
[10]  R. Bornstein and Q. Lin, “Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies,” Atmospheric Environment, vol. 34, no. 3, pp. 507–516, 2000.
[11]  P. G. Dixon and T. L. Mote, “Patterns and cause of Atlanda’s urban heat island-initiated precipitation,” Journal of Applied Meteorology, vol. 42, pp. 1273–1284, 2003.
[12]  F. Fujibe, “Long-term surface wind changes in the Tokyo metropolitan area in the afternoon of sunny days in the warm season,” Journal of the Meteorological Society of Japan, vol. 81, no. 1, pp. 141–149, 2003.
[13]  T. Inoue and F. Kimura, “Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days,” Geophysical Research Letters, vol. 31, no. 5, Article ID L05103, 2004.
[14]  J. M. Shepherd, H. Pierce, and A. J. Negri, “Rainfall modification by major urban areas: observations from spaceborne rain radar on the TRMM satellite,” Journal of Applied Meteorology, vol. 41, no. 7, pp. 689–701, 2002.
[15]  C. Price, S. Michaelides, S. Pashiardis, and P. Alpert, “Long term changes in diurnal temperature range in Cyprus,” Atmospheric Research, vol. 51, no. 2, pp. 85–98, 1999.
[16]  H. N. Singh, S. D. Patil, S. D. Bansod, and N. Singh, “Seasonal variability in mean sea level pressure extremes over the Indian region,” Atmospheric Research, vol. 101, no. 1-2, pp. 102–111, 2011.
[17]  J. Kingwell, J. Shimizu, K. Narita, H. Kawabata, and I. Shimizu, “Weather factors affecting rocket operations: a review and case history,” American Meteorological Society, vol. 72, pp. 778–793, 1991.
[18]  R. E. Turner and C. K. Hill, Terrestrial Environment (Climatic) Guidlines for Use in Aerospace Vehicle Development, 1982 Revision, Technical Memor. 82473, National Aeronautics and Space Administration, 1982.
[19]  “Space Research in India,” in Proceedings of the 38th COSPAR Meeting, pp. 199–204, Bremen, Germeny, 2010.
[20]  P. V. Joseph and A. Simon, “Weakening trend of the southwest monsoon current through peninsular India from 1950 to the present,” Current Science, vol. 89, no. 4, pp. 687–694, 2005.
[21]  S. K. Dash, J. R. Kumar, and M. S. Shekhar, “On the decreasing frequency of monsoon depressions over the Indian region,” Current Science, vol. 86, no. 10, pp. 1404–1411, 2004.
[22]  K. N. Krishnakumar, G. S. L. H. V. Prasada Rao, and C. S. Gopakumar, “Rainfall trends in twentieth century over Kerala, India,” Atmospheric Environment, vol. 43, no. 11, pp. 1940–1944, 2009.
[23]  National Council of Educational Research and Training (NCERT), India, Text book of physics—part I for class 11, 2006.
[24]  K. E. Trenberth, “Recent observed interdecadal climate changes in the Northern Hemisphere,” Bulletin of the American Meteorological Society, vol. 71, no. 7, pp. 988–993, 1990.
[25]  T. K. Karl, H. F. Diaz, and G. Kukla, “Urbanization: its detection and effect in the United States climate record,” Journal of Climate, vol. 1, pp. 1099–1123, 1988.
[26]  M. Rebetez and M. Beniston, “Changes in sunshine duration are correlated with changes in daily temperature range this century: an analysis of Swiss climatological data,” Geophysical Research Letters, vol. 25, no. 19, pp. 3611–3613, 1998.
[27]  K. V. S. Namboodiri, P. K. Dileep, and K. Mammen, “Wind steadiness up to 35 km and its variability before the South West Monsoon onset and the withdrawal,” Mausam, vol. 63, pp. 275–282, 2012.
[28]  P. Minnis, A. J. Kirk, P. Rabindra, and P. Dung, “Contrails, cirrus trends, and climate,” Journal of Climate, vol. 17, pp. 1671–1685, 2004.
[29]  C. S. Zerefos, K. Eleftheratos, D. S. Balis, P. Zanis, G. Tselioudis, and C. Meleti, “Evidence of impact of aviation on cirrus cloud formation,” Atmospheric Chemistry and Physics, vol. 3, no. 5, pp. 1633–1644, 2003.
[30]  K. Eleftheratos, C. S. Zerefos, C. Varotsos, and I. Kapsomenakis, “Interannual variability of cirrus clouds in the tropics in el ni?o southern oscillation (ENSO) regions based on international satellite cloud climatology project (ISCCP) satellite data,” International Journal of Remote Sensing, vol. 32, no. 21, pp. 6395–6405, 2011.
[31]  K. E. Trenberth, P. D. Jones, and P. Ambenje, “Observations: surface and climate change,” in Climate Change 2007: The Physical Science Basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, and M. Manning, Eds., Cambridge University Press, Cambridge, UK, 2007.
[32]  K. R. Kumar, K. K. Kumar, and G. B. Pant, “Diurnal asymmetry of surface temperature trends over India,” Geophysical Research Letters, vol. 21, no. 8, pp. 677–680, 1994.
[33]  T. R. Sivaramakrishnan and P. S. Prakash Rao, “Sea-breeze features over Sriharikota, India,” Meteorological Magazine, vol. 118, no. 1400, pp. 64–67, 1989.
[34]  N. A. Sontakke, N. Singh, and H. N. Singh, “Instrumental period rainfall series of the Indian region (AD 1813–2005): revised reconstruction, update and analysis,” Holocene, vol. 18, no. 7, pp. 1055–1066, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133