全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Trends of Dust Transport Episodes in Cyprus Using a Classification of Synoptic Types Established with Artificial Neural Networks

DOI: 10.1155/2013/280248

Full-Text   Cite this paper   Add to My Lib

Abstract:

The relationship between dust episodes over Cyprus and specific synoptic patterns has long been considered but also further supported in recent studies by the authors. Having defined a dust episode as a day when the average PM10 measurement exceeds the threshold of 50?mg/(m3?day), the authors have utilized Artificial Neural Networks and synoptic charts, together with satellite and ground measurements, in order to establish a scheme which links specific synoptic patterns with the appearance of dust transport over Cyprus. In an effort to understand better these complicated synoptic-scale phenomena and their associations with dust transport episodes, the authors attempt in the present paper a followup of the previous tasks with the objective to further investigate dust episodes from the point of view of their time trends. The results have shown a tendency for the synoptic situations favoring dust events to increase in the last decades, whereas, the synoptic situations not favoring such events tend to decrease with time. 1. Introduction It is common knowledge that dust transport from desert areas is not confined to the regions adjacent to the desert source itself, but dust can be transported extensively, and the final deposition can be thousands of kilometers away from the originating source (see [1]). According to Marelli [2], this natural contribution to Particulate Matter (PM) may range from 5% to 50% in different European countries. The Mediterranean Basin is generally recognized as a major recipient of desert dust originating from the Sahara and Saudi Arabia deserts; several t/km2 are deposited each year in the Mediterranean Sea [3] profoundly affecting its coastal regions (see [4–15]). Dust transport can be defined as a three-stage process: initially, dust is lifted and suspended in the atmospheric air, resulting in the occurrence of high level concentrations of dust in desert areas and then transported to great distances from the initial source where it finally settles on the ground. This is a quite complex phenomenon since a large number of factors contribute to its intensity and frequency. Particularly, in countries of the southeastern Mediterranean region which is particularly affected, there is an acute interest in understanding the phenomenon itself as well as the various mechanisms which govern important attributes like the severity, duration, and time trends of dust transportation (see [16]). The present study focuses on the third stage of dust transportation, namely the deposition of desert dust at ground level. The importance of such a task

References

[1]  U. Dayan, J. Heffter, J. Miller, and G. Gutman, “Dust intrusion events into the Mediterranean basin,” Journal of Applied Meteorology, vol. 30, no. 8, pp. 1185–1199, 1991.
[2]  L. Marelli, “Contribution of natural sources to air pollution levels in the EU a technical basis for the development of guidance for the member states,” in Post Workshop Report From ‘‘Contribution of Natural Sources to PM Levels in Europe’’, EUR 22779 EN, JRC, Ispra, 2007.
[3]  E. Ganor and Y. Mamane, “Transport of Saharan dust across the eastern Mediterranean,” Atmospheric Environment, vol. 16, no. 3, pp. 581–587, 1982.
[4]  G. Bergametti, L. Gomes, M. N. Le Coustumer, G. Coude-Gaussen, and P. Rognon, “African dust observed over Canary Islands: source-regions identification and transport pattern for some summer situations,” Journal of Geophysical Research, vol. 94, no. 12, pp. 14–864, 1989.
[5]  S. Guerzoni and R. Chester, The Impact of the Desert Dust Across the Mediterranean, Kluwer Academic Publishers, Norwell, Mass, USA, 1996.
[6]  X. Querol, A. Alastuey, J. A. Puicercus et al., “Seasonal evolution of suspended particles around a large coal-fired power station: particulate levels and sources,” Atmospheric Environment, vol. 32, no. 11, pp. 1963–1978, 1998.
[7]  S. Rodríguez, X. Querol, A. Alastuey, G. Kallos, and O. Kakaliagou, “Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain,” Atmospheric Environment, vol. 35, no. 14, pp. 2433–2447, 2001.
[8]  J. Barkan, P. Alpert, H. Kutiel, and P. Kishcha, “Synoptics of dust transportation days from Africa toward Italy and central Europe,” Journal of Geophysical Research D, vol. 110, no. 7, Article ID D07208, pp. 1–14, 2005.
[9]  M. Escudero, S. Castillo, X. Querol et al., “Wet and dry African dust episodes over eastern Spain,” Journal of Geophysical Research D, vol. 110, no. 18, Article ID D18S08, pp. 1–15, 2005.
[10]  E. Gerasopoulos, G. Kouvarakis, P. Babasakalis, M. Vrekoussis, J. P. Putaud, and N. Mihalopoulos, “Origin and variability of particulate matter (PM10) mass concentrations over the Eastern Mediterranean,” Atmospheric Environment, vol. 40, no. 25, pp. 4679–4690, 2006.
[11]  G. Kallos, A. Papadopoulos, P. Katsafados, and S. Nickovic, “Transatlantic Saharan dust transport: model simulation and results,” Journal of Geophysical Research D, vol. 111, no. 9, Article ID D09204, 2006.
[12]  G. Kallos, M. Astitha, P. Katsafados, and C. Spyrou, “Long-range transport of anthropogenically and naturally produced particulate matter in the Mediterranean and North Atlantic: current state of knowledge,” Journal of Applied Meteorology and Climatology, vol. 46, no. 8, pp. 1230–1251, 2007.
[13]  M. Ko?ak, N. Mihalopoulos, and N. Kubilay, “Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean,” Atmospheric Environment, vol. 41, no. 18, pp. 3806–3818, 2007.
[14]  C. Mitsakou, G. Kallos, N. Papantoniou et al., “Saharan dust levels in Greece and received inhalation doses,” Atmospheric Chemistry and Physics, vol. 8, no. 23, pp. 7181–7192, 2008.
[15]  C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data,” Journal of Geophysical Research D, vol. 113, no. 11, Article ID D11205, 2008.
[16]  S. Michaelides, P. Evripidou, and G. Kallos, “Monitoring and predicting Saharan desert dust events in the eastern Mediterranean,” Weather, vol. 54, no. 11, pp. 359–365, 1999.
[17]  D. W. Griffin, V. H. Garrison, J. R. Herman, and E. A. Shinn, “African desert dust in the Caribbean atmosphere: microbiology and public health,” Aerobiologia, vol. 17, no. 3, pp. 203–213, 2001.
[18]  T. Sandstrom and B. Forsberg, “Desert dust: an unrecognized source of dangerous air pollution?” Epidemiology, vol. 19, no. 6, pp. 808–809, 2008.
[19]  H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, “Effect of dust on the transparent cover of solar collectors,” Energy Conversion and Management, vol. 47, no. 18-19, pp. 3192–3203, 2006.
[20]  J. J. Simpson, G. L. Hufford, R. Servranckx, J. Berg, and D. Pieri, “Airborne Asian dust: case study of long-range transport and implications for the detection of volcanic ash,” Weather & Forecasting, vol. 18, no. 2, pp. 121–141, 2003.
[21]  A. Sunnu, F. Resch, and G. Afetia, “Back-trajectory model of the Saharan dust flux and particle mass distribution in West Africa,” Aeolian Research, vol. 9, pp. 125–132, 2013.
[22]  L. Mona, Z. Liu, D. Müller et al., “Lidar measurements for desert dust characterization: an overview,” Advances in Meteorology, vol. 2012, Article ID 356265, 36 pages, 2012.
[23]  S. Michaelides, F. Tymvios, D. Paronis, and A. Retalis, “Artificial neural networks for the diagnosis and prediction of desert dust transport episodes,” Studies in Fuzziness and Soft Computing, vol. 269, pp. 285–304, 2011.
[24]  M. H. Beale, M. T. Hagan, and H. B. Demuth, Neural Network Toolbo User’s Guide. The MathWorks, 2010, http://www.mathworks.com/help/pdf_doc/nnet/nnet.pdf.
[25]  S. C. Michaelides, F. Liassidou, and C. N. Schizas, “Synoptic classification and establishment of analogues with artificial neural networks,” Pure and Applied Geophysics, vol. 164, no. 6-7, pp. 1347–1364, 2007.
[26]  T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–1480, 1990.
[27]  T. Kohonen, Self-Organizing Maps, vol. 30 of Series in Information Sciences, Springer, Heidelberg, Germany, 2nd edition, 1997.
[28]  S. C. Sheridan and C. C. Lee, “The self-organizing map in synoptic climatological research,” Progress in Physical Geography, vol. 35, no. 1, pp. 109–119, 2011.
[29]  S. Tsakovski, P. Simeonova, V. Simeonov, M. C. Freitas, I. Dionísio, and A. M. G. Pacheco, “Air-quality assessment of Pico-mountain environment (Azores) by using chemometric and trajectory analyses,” Journal of Radioanalytical and Nuclear Chemistry, vol. 281, no. 1, pp. 17–22, 2009.
[30]  C. S. Pattichis, C. N. Schizas, and L. T. Middleton, “Neural network models in EMG diagnosis,” IEEE Transactions on Biomedical Engineering, vol. 42, no. 5, pp. 486–496, 1995.
[31]  F. Schnorrenberg, C. S. Pattichis, C. N. Schizas, K. Kyriacou, and M. Vassiliou, “Computer-aided classification of breast cancer nuclei,” Technology and Health Care, vol. 4, no. 2, pp. 147–161, 1996.
[32]  D. W. Patterson, Artificial Neural Networks, Theory and Applications, Prentice Hall, 1995.
[33]  F. Tymvios, K. Savvidou, and S. C. Michaelides, “Association of geopotential height patterns with heavy rainfall events in Cyprus,” Advances in Geosciences, vol. 23, pp. 73–78, 2010.
[34]  N. G. Prezerakos, A. G. Paliatsos, and K. V. Koukouletsos, “Diagnosis of the relationship between dust storms over the Sahara desert and dust deposit or coloured rain in the South Balkans,” Advances in Meteorology, vol. 2010, Article ID 760546, 14 pages, 2010.
[35]  N. G. Prezerakos, “Synoptic flow patterns leading to the generation of north-west African depressions,” International Journal of Climatology, vol. 10, no. 1, pp. 33–48, 1990.
[36]  N. G. Prezerakos, S. C. Michaelides, and A. S. Vlassi, “Atmospheric synoptic conditions associated with the initiation of north-west African depressions,” International Journal of Climatology, vol. 10, no. 7, pp. 711–729, 1990.
[37]  N. Kubilay, S. Nickovic, C. Moulin, and F. Dulac, “An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean,” Atmospheric Environment, vol. 34, no. 8, pp. 1293–1303, 2000.
[38]  S. Michaelides, F. Tymvios, and D. Charalambous, “Investigation of trends in synoptic patterns over Europe with artificial neural networks,” Advances in Geosciences, vol. 23, pp. 107–112, 2010.
[39]  A. K. A. El-Kadi and P. A. Smithson, “Atmospheric classifications and synoptic climatology,” Progress in Physical Geography, vol. 16, no. 4, pp. 432–455, 1992.
[40]  P. Maheras, I. Patrikas, T. Karacostas, and C. Anagnostopoulou, “Automatic classification of circulation types in Greece: methodology, description, frequency, variability and trend analysis,” Theoretical and Applied Climatology, vol. 67, no. 3-4, pp. 205–223, 2000.
[41]  A. J. Cannon, P. H. Whitfield, and E. R. Lord, “Synoptic map-pattern classification using recursive partitioning and principal component analysis,” Monthly Weather Review, vol. 130, no. 5, pp. 1187–1206, 2002.
[42]  S. C. Michaelides, C. S. Pattichis, and G. Kleovoulou, “Classification of rainfall variability by using artificial neural networks,” International Journal of Climatology, vol. 21, no. 11, pp. 1401–1414, 2001.
[43]  H. M. van den Dool, “A new look at weather forecasting through analogues,” Monthly Weather Review, vol. 117, no. 10, pp. 2230–2247, 1989.
[44]  E. N. Lorenz, “Atmospheric predictability as revealed by naturally occurring analogues,” Journal of the Atmospheric Sciences, vol. 26, no. 4, pp. 636–646, 1969.
[45]  A. Philipp, J. Bartholy, C. Beck et al., “Cost733cat—a database of weather and circulation type classifications,” Physics and Chemistry of the Earth, vol. 35, no. 9–12, pp. 360–373, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133