全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimized Quality of Service for Real-Time Wireless Sensor Networks Using a Partitioning Multipath Routing Approach

DOI: 10.1155/2013/497157

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multimedia sensor networks for real-time applications have strict constraints on delay, packet loss, and energy consumption requirements. For example, video streaming in a disaster-management scenario requires careful handling to ensure that the end-to-end delay is within the acceptable range and the video is received properly without any distortion. The failure to transmit a video stream effectively occurs for many reasons, including sensor function limitations, excessive power consumption, and a lack of routing reliability. We propose a novel mathematical model for quality of service (QoS) route determination that enables a sensor to determine the optimal path for minimising resource use while satisfying the required QoS constraints. The proposed mathematical model uses the Lagrangian relaxation mixed integer programming technique to define critical parameters and appropriate objective functions for controlling the adaptive QoS constrained route discovery process. Performance trade-offs between QoS requirements and energy efficiency were simulated using the LINGO mathematical programming language. The proposed approach significantly improves the network lifetime, while reducing energy consumption and decreasing average end-to-end delays within the sensor network via optimised resource sharing in intermediate nodes compared with existing routing algorithms. 1. Introduction A typical sensor network comprises a large number of multifunctional, low-cost, and low-power nodes that are deployed densely and randomly in an environment for monitored sensing to control the environment, perform local processing, and communicate results with a base station that performs most of the complex processing. One of the many challenges concerning wireless sensor networks (WSNs) is how to provide Quality of Service (QoS) parameter guarantees in real-time applications. Several approaches and protocols have been proposed in the literature for QoS parameter support in these types of networks [1, 2]. Energy consumption is considered to be the most important constraint in WSNs because of the low power and the processing factors. These factors reduce the QoS and the lifetime of the network. The primary concern is how to properly use resources (for deriving multimedia content) to provide appropriately shared data among all of the transmission radios while maintaining a proper level of imaging and video data transmission. The main goal is the appropriate use of multimedia resources by properly maintaining a level of optimized QoS, which further depends on the performance of the

References

[1]  I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Computer Networks, vol. 51, no. 4, pp. 921–960, 2007.
[2]  K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325–349, 2005.
[3]  T. W. Rondeau and C. W. Bostian, Artificial Intelligence in Wireless Communications, Artech House, Norwood, Mass, USA, 2009.
[4]  J. Y. K. Chow and I. B. Tapadar, “Resource allocation in wireless networks,” ed: Google Patents, 2004.
[5]  H. A. Taha, Integer Programming: Theory, Applications, and Computations, vol. 975, Academic Press, New York, NY, USA, 1975.
[6]  R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, New York, NY, USA, 1993.
[7]  M. Esseghir and N. Bouabdallah, “Node density control for maximizing wireless sensor network lifetime,” International Journal of Network Management, vol. 18, no. 2, pp. 159–170, 2008.
[8]  M. Bhardwaj, T. Garnett, and A. P. Chandrakasan, “Upper bounds on the lifetime of sensor networks,” in Proceedings of the IEEE International Conference on Communications (ICC '01), vol. 3, pp. 785–790, June 2000.
[9]  I. Akyildiz and X. Wang, Wireless Mesh Networks, vol. 1, Wiley, New York, NY, USA, 2009.
[10]  Y. Yang, J. Wang, and R. Kravets, “Designing routing metrics for mesh networks,” in Proceedings of the IEEE Workshop on Wireless Mesh Networks (WiMesh '05), September 2005.
[11]  S. Biaz, B. Qi, and Y. Ji, “Improving expected transmission time metric in multi-rate multi-hop networks,” in Proceedings of the 5th IEEE Consumer Communications and Networking Conference (CCNC '08), pp. 533–537, January 2008.
[12]  X. He and F. Y. Li, “Metric-based cooperative routing in multihop Ad Hoc networks,” Journal of Computer Networks and Communications, vol. 2012, Article ID 893867, 12 pages, 2012.
[13]  Y. Lan, W. Wenjing, and G. Fuxiang, “A real-time and energy aware QoS routing protocol for multimedia wireless sensor networks,” in Proceedings of the 7th World Congress on Intelligent Control and Automation (WCICA '08), pp. 3321–3326, June 2008.
[14]  A. Ali, L. A. Latiff, M. A. Sarijari, and N. Fisal, “Real-time routing in wireless sensor networks,” in Proceedings of the 28th International Conference on Distributed Computing Systems Workshops (ICDCS '08), pp. 114–119, June 2008.
[15]  A. A. Ahmed and N. Fisal, “A real-time routing protocol with load distribution in wireless sensor networks,” Computer Communications, vol. 31, no. 14, pp. 3190–3203, 2008.
[16]  B. Deb, S. Bhatnagar, and B. Nath, “ReInForM: reliable information forwarding using multiple paths in sensor networks,” in Proceedingsof the 28th Annual IEEE International Conference on Local Computer Networks (LCN '03), pp. 406–415, 2003.
[17]  Y. Yang, C. Zhong, Y. Sun, and J. Yang, “Network coding based reliable disjoint and braided multipath routing for sensor networks,” Journal of Network and Computer Applications, vol. 33, pp. 422–432, 2010.
[18]  X. Huang and Y. Fang, “Multiconstrained QoS multipath routing in wireless sensor networks,” Wireless Networks, vol. 14, no. 4, pp. 465–478, 2008.
[19]  A. Bagula and K. Mazandu, “Energy constrained multipath routing in wireless sensor networks,” in Ubiquitous Intelligence and Computing, F. Sandnes, Y. Zhang, C. Rong, et al., Eds., vol. 5061, pp. 453–467, Springer, Berlin, Germany, 2008.
[20]  A. Chehri and H. T. Mouftah, “Energy efficiency adaptation for multihop routing in wireless sensor networks,” Journal of Computer Networks and Communications, vol. 2012, Article ID 767920, 8 pages, 2012.
[21]  I. Bhakta, S. Chakraborty, B. Mitra, et al., “A diffServ architecture for QoS-aware routing for delay-sensitive and best-effort services in IEEE 802.16 mesh networks,” Journal of Computer Networks and Communications, vol. 2011, Article ID 951310, 13 pages, 2011.
[22]  I. Atov, H. T. Tran, and R. J. Harris, “Efficient QoS partition and routing in multiservice IP networks,” in Proceedings of the 22nd IEEE International Performance, Computing, and Communications Conference, pp. 435–441, usa, April 2003.
[23]  J. L. Lu, W. Shu, and W. Wu, “A survey on multipacket reception for wireless random access networks,” Journal of Computer Networks and Communications, vol. 2012, Article ID 246359, 14 pages, 2012.
[24]  R. Fantacci, “Queuing analysis of the selective repeat automatic repeat request protocol wireless packet networks,” IEEE Transactions on Vehicular Technology, vol. 45, no. 2, pp. 258–264, 1996.
[25]  L. Cai, X. Shen, and J. W. Mark, Multimedia Services in Wireless Internet: Modeling and Analysis, Wiley, New York, NY, USA, 2009.
[26]  M. Zorzi, R. R. Rao, and L. B. Milstein, “On the accuracy of a first-order Markov model for data transmission on fading channels,” in Proceedings of the 1995 4th IEEE International Conference on Universal Personal Communications Record, pp. 211–215, November 1995.
[27]  M. Zuniga and B. Krishnamachari, “Analyzing the transitional region in low power wireless links,” in Proceedings of the 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON '04), pp. 517–526, October 2004.
[28]  K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari, “Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks,” in Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys '04), pp. 108–121, Baltimore, Md, USA, November 2004.
[29]  D. Lal, A. Manjeshwar, F. Herrmann, E. Uysal-Biyikoglu, and A. Keshavarzian, “Measurement and characterization of link quality metrics in energy constrained wireless sensor networks,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '03), vol. 1, pp. 446–452, December 2003.
[30]  F. S. Presentation, An Introduction to Motorola's RCF, (Reconfigurable Compute Fabric) Technology, Presented by Frank David, Launched by Freescale Semiconductor, 2004.
[31]  J. Wang and Y. K. Lee, “Determination of the optimal Hop number for wireless sensor networks,” in Proceedings of the International Conference on Computational Science and Its Applications: Part II, Seoul, Korea, 2009.
[32]  T. Houngbadji and S. Pierre, “QoSNET: an integrated QoS network for routing protocols in large scale wireless sensor networks,” Computer Communications, vol. 33, no. 11, pp. 1334–1342, 2010.
[33]  L. Schrage, Optimization Modeling With LINGO, LINDO Systems, Chicago, Ill, USA, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413