Node mobility in mobile ad hoc networks (MANETs) causes frequent route breakages and intermittent link stability. In this paper, we introduce a robust routing scheme, known as ad hoc on-demand multipath distance vector with dynamic path update (AOMDV-DPU), for delay-sensitive data transmission over MANET. The proposed scheme improves the AOMDV scheme by incorporating the following features: (i) a routing metric based on the combination of minimum hops and received signal strength indicator (RSSI) for discovery of reliable routes; (ii) a local path update mechanism which strengthens the route, reduces the route breakage frequency, and increases the route longevity; (iii) a keep alive mechanism for secondary route maintenance which enables smooth switching between routes and reduces the route discovery frequency; (iv) a packet salvaging scheme to improve packet delivery in the event of a route breakage; and (v) low HELLO packet overhead. The simulations are carried out in ns-2 for varying node speeds, number of sources, and traffic load conditions. Our AOMDV-DPU scheme achieves significantly higher throughput, lower delay, routing overhead, and route discovery frequency and latency compared to AOMDV. For H.264 compressed video traffic, AOMDV-DPU scheme achieves 3?dB or higher PSNR gain over AOMDV at both low and high node speeds. 1. Introduction Wireless mobile ad-hoc networks (MANETs) are usually bandwidth limited and characterized by time-varying error-prone channels due to node mobility, resulting in the link loss, route breakage, and short route lifetime. These characteristics pose a serious challenge in designing efficient routing schemes, especially for supporting the delay-sensitive traffic such as video streaming. The proactive routing protocols (e.g., destination sequenced distance vector (DSDV) [1] and optimized link state routing (OLSR) [2]) generate too much overhead in MANET because they find paths in advance for all source and destination pairs and periodically exchange topology information to maintain them, even when no data is being transmitted [3, 4]. In contrast, the reactive routing protocols (e.g., ad-hoc on-demand distance vector (AODV) [5] and dynamic source routing (DSR) [6]) have lower overhead as they find a route from the source to destination as and when required [3, 4]. Many on-demand routing protocols proposed for MANET in the past do not sufficiently address the issue of frequent route breakage due to high node mobility. Two approaches employed to overcome this problem are (i) frequent link updates along the route to notify
References
[1]
C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers,” in Proceedings of the ACM Conference on Communications Architectures, Protocols and Applications (SIGCOMM ’94), pp. 234–244, 1994.
[2]
T. Clausen and P. Jaqcquet, “Optimized link state routing (OLSR) RFC,” RFC 3626, 2003, http://www.ietf.org/rfc/rfc3626.txt.
[3]
J. Tsai and T. Moors, “A review of multipath routing protocols: from wireless ad hoc to mesh networks,” in Proceedings of the ACoRN Early Career Researcher Workshop on Wireless Multihop Networking, Australia, 2006.
[4]
C. Mbarushimana and A. Shahrabi, “Comparative study of reactive and proactive routing protocols performance in mobile ad hoc networks,” in Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops/Symposia (AINAW '07), pp. 679–684, May 2007.
[5]
C. Perkins, E. Belding Royer, and S. R. Das, “Ad-hoc on-demand distance vector (AODV) routing,” RFC 3561, 2003, http://www.ietf.org/rfc/rfc3561.txt.
[6]
D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,” in Mobile Computing, ch 5, Kluwer Academic Publishers, 1996.
[7]
M. K. Marina and S. R. Das, “Ad hoc on-demand multipath distance vector routing,” Wireless Communications and Mobile Computing, vol. 6, no. 7, pp. 969–988, 2006.
[8]
S. Tang, B. Zhang, M. Watanabe, and S. Tanaka, “A link heterogeneity-aware on-demand routing (LHAOR) protocol utilizing local update and RSSI information,” IEICE Transactions on Communications, vol. 88, no. 9, pp. 3588–3597, 2005.
[9]
J. Novatnack, L. Greenwald, and H. Arora, “Evaluating ad hoc routing protocols with respect to quality of service,” Tech. Rep. DU-CS-04-05, Department Computer Science, Drexel University, Philadelphia, Pa, USA, 2004.
[10]
S. J. Lee and M. Gerla, “AODV-BR: backup routing in ad hoc networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference, pp. 1311–1316, Chicago, Ill, USA, September 2000.
[11]
H. U. Rehman and L. Wolf, “Performance enhancement in AODV with accessibility prediction,” in Proceedings of the IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems (MASS '07), pp. 1–6, October 2007.
[12]
A. Mtibaa and F. Kamoun, “MMDV: multipath and MPR based AODV routing protocol,” in Proceedings of the IFIP 5th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net '06), pp. 137–144, 2006.
[13]
X. Li and L. Cuthbert, “Node-disjointness-based multipath routing for mobile ad hoc networks,” in Proceedings of the 1st ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN '04), pp. 23–29, New York, NY, USA, October 2004.
[14]
S. Lee and M. Gerla, “Split multipath routing with maximally disjoint paths in ad hoc networks,” 2001, https://citeseer.ist.psu.edu/lee01split.html.
[15]
G. Koltsidas, S. Karapantazis, G. Theodoridis, and F. N. Pavlidou, “A detailed study of dynamic manet on-demand multipath routing for Mobile Ad hoc Networks,” in Proceedings of the 4th IEEE and IFIP International Conference on Wireless and Optical Communications Networks (WOCN '07), July 2007.
[16]
Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A framework for reliable routing in mobile ad hoc networks,” in Proceedings of the 22nd Annual Joint Conference on the IEEE Computer and Communications Societies, pp. 270–280, April 2003.
[17]
S. Yin and X. Lin, “MALB: MANET adaptive load balancing,” in Proceedings of the IEEE 60th Vehicular Technology Conference (VTC '04), pp. 2843–2847, September 2004.
[18]
M. Tauchi, T. Ideguchi, and T. Okuda, “Ad-hoc routing protocol avoiding route breaks based on AODV,” in Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS ’05), Washington, DC, USA, January 2005.
[19]
S. Crisóstomo, S. Sargento, P. Brand?o, and R. Prior, “Improving AODV with preemptive local route repair,” in Proceedings of the International Workshop on Wireless Ad-Hoc Networks, pp. 223–227, June 2004.
[20]
R. S. Chang and S. J. Leu, “Long-lived path routing with received signal strength for ad hoc networks,” in Proceedings of the 1st International Symposium on Wireless Pervasive Computing, pp. 1–6, January 2006.
[21]
P. Sambasivam, A. Murthy, and E. Belding-Royer, “Dynamically adaptive multipath routing based on AODV,” in Proceedings of the IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net '04), Bodrum, Turkey, June 2004.
[22]
M. Khazaei and R. Berangi, “A multi-path routing protocol with fault tolerance in mobile ad hoc networks,” in Proceedings of the 14th International CSI Computer Conference (CSICC '09), pp. 77–82, October 2009.
[23]
A. Chintawar, M. Chatterjee, and A. Vidhate, “AOMDV-APLP: an enhanced algorithm with accessibility and link breakage prediction,” in Proceedings of the International Conference and Workshop on Emerging Trends in Technology (ICWET '11), pp. 841–845, February 2011.
[24]
S. V. Mallapur and S. Terdal, “Enhanced ad-hoc on demand multipath distance vector routing protocol (EAOMDV),” International Journal of Computer Science and Information Security, vol. 7, no. 3, pp. 166–170, 2010.
[25]
X. Chen, H. M. Jones, and D. Jayalath, “Channel-aware routing in MANETs with route handoff,” IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 108–121, 2011.
[26]
N. S. Kulkarni, B. Raman, and I. Gupta, “On demand routing protocols for mobile ad hoc networks: a review,” in Proceedings of the IEEE IAAC, pp. 586–591, Patiala, India, March 2009.
[27]
T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.
J. Klaue, B. Rathke, and A. Wolisz, “EvalVid—a framework for video transmission and quality evaluation,” in Proceedings of the International Conference on Modeling Techniques and Tools for Computer Performance Evaluation, pp. 255–272, 2003.