全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Seismic Analysis of Deep Water Pile Foundation Based on Three-Dimensional Potential-Based Fluid Elements

DOI: 10.1155/2013/874180

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates the use of three-dimensional (3D) potential-based fluid elements for seismic analyses of deep water pile foundation. The mathematical derivations of the potential-based formulations are presented for reference. The potential-based modeling technique is studied and validated through experimental data and analytical solutions. Earthquake time history analyses for a 9-pile foundation in dry and different water environments are conducted, respectively. The seismic responses are discussed to investigate the complex effect of earthquake-induced fluid-structure interaction. Through the analyses, the potential-based fluid and interface elements are shown to perform adequately for the seismic analyses of pile foundation-water systems, and some interesting conclusions and recommendations are drawn. 1. Introduction Bridges are popular solutions for crossing gaps caused by rivers, reservoirs, straits, or bays. These bridges usually have long spans and need to be supported by deep water foundations [1]. One of the common choices is using deep water pile foundations due to their low cost and ease of construction [2, 3]. This type of foundation consists of piles, a concrete cap, and piers or towers, where piles and pile cap are usually immersed in the water [4, 5]. Previous research [6–8] showed that the interaction between the structure and the surrounding water might alter the dynamic characteristics, which may lead to additional dynamic forces. The earliest approaches to account for the hydrodynamic force on the cylindrical objects were drawn from experimental data and presented in terms of “added mass” [9]. Although it lacked theoretical derivation, “added mass” is still a widely used concept because of its simplicity [10–12]. The analytical dynamics of cantilever towers in water was then developed mathematically, including structural flexibility and water compressibility effects [13]. Many later investigations followed it and continued to study the fluid-structure interactions of the single immersed cylinder [14, 15]. Although the single pile problem has been studied thoroughly, the pile-group-water interaction is still hard to solve due to the mathematical difficulties in modelling the complex interfaces and boundaries. Rapid development of computer techniques motivated scientists to find numerical methods to overcome those analytical limitations. Numerous approaches based on either finite elements or boundary elements were proposed in the last few years [16, 17]. Potential-based fluid element (PBFE) was proposed in 1980s [18]. Today it

References

[1]  M. Feng, “China's Major Bridges,” in Proceedings of the International Association for Bridge and Structural Engineering Symposium (IABSE '09), pp. 1–24, Shanghai, China, 2009.
[2]  T. J. Ingham, S. Rodriguez, R. Donikian, and J. Chan, “Seismic analysis of bridges with pile foundations,” Computers and Structures, vol. 72, no. 1, pp. 49–62, 1999.
[3]  S. S. Abdelsalam, S. Sritharan, and M. T. Suleiman, “Current design and construction practices of bridge pile foundations with emphasis on implementation of LRFD,” Journal of Bridge Engineering, vol. 15, no. 6, pp. 749–758, 2010.
[4]  Q. You, X. Zhang, L. Feng, and H. Liu, “Sutong Bridge—a thousand-meter span cable-stayed bridge across Yangtze River,” in Proceedings of the 24th Annual International Bridge Conference, Pittsburgh, Pa, USA, 2007.
[5]  C. Lin, C. Bennett, J. Han, and R. L. Parsons, “Integrated analysis of the performance of pile-supported bridges under scoured conditions,” Engineering Structures, vol. 36, pp. 27–38, 2012.
[6]  M. R. Maheri and R. T. Severn, “Experimental added-mass in modal vibration of cylindrical structures,” Engineering Structures, vol. 14, no. 3, pp. 163–175, 1992.
[7]  A. U?ci?owska and J. A. Ko?odziej, “Free vibration of immersed column carrying a tip mass,” Journal of Sound and Vibration, vol. 216, no. 1, pp. 147–157, 1998.
[8]  H. R. ?z, “Natural frequencies of an immersed beam carrying a tip mass with rotatory inertia,” Journal of Sound and Vibration, vol. 266, no. 5, pp. 1099–1108, 2003.
[9]  J. R. Morison, M. P. O. 'Brien, J. W. Johnson, and S. A. Schaaf, “The force exerted by surface waves on piles,” AIME Petroleum Transactions, vol. 189, pp. 149–154, 1950.
[10]  R. E. Taylor, “A review of hydrodynamic load analysis for submerged structures excited by earthquakes,” Engineering Structures, vol. 3, no. 3, pp. 131–139, 1981.
[11]  Ministry of Communications of China, “Guidelines for seismic design of highway bridges,” JTG/T B02-01-2008, Beijing, China, 2008.
[12]  M. S. Park, W. Koo, and K. Kawano, “Dynamic response analysis of an offshore platform due to seismic motions,” Engineering Structures, vol. 33, no. 5, pp. 1607–1616, 2011.
[13]  C. Y. Liaw and A. K. Chopra, “Dynamics of towers surrounded by water,” Earthquake Engineering and Structural Dynamics, vol. 3, no. 1, pp. 33–49, 1974.
[14]  K. Wei, W. C. Yuan, N. Bouaanani, and C. C. Chang, “An improved HSFR method for natural vibration analysis of an immersed cylinder pile with a tip mass,” Theoretical and Applied Mechanics Letters, vol. 2, no. 2, Article ID 023002, 4 pages, 2012.
[15]  J. S. Wu and C. T. Chen, “An exact solution for the natural frequencies and mode shapes of an immersed elastically restrained wedge beam carrying an eccentric tip mass with mass moment of inertia,” Journal of Sound and Vibration, vol. 286, no. 3, pp. 549–568, 2005.
[16]  J. T. Xing, W. G. Price, and Y. G. Chen, “A mixed finite-element finite-difference method for nonlinear fluid-structure interaction dynamics. I. Fluid-rigid structure interaction,” Proceedings of the Royal Society A, vol. 459, no. 2038, pp. 2399–2430, 2003.
[17]  N. Bouaanani and B. Miquel, “A new formulation and error analysis for vibrating dam-reservoir systems with upstream transmitting boundary conditions,” Journal of Sound and Vibration, vol. 329, no. 10, pp. 1924–1953, 2010.
[18]  G. C. Everstine, “A symmetric potential formulation for fluid-structure interaction,” Journal of Sound and Vibration, vol. 79, no. 1, pp. 157–160, 1981.
[19]  K. J. Bathe, H. Zhang, and S. Ji, “Finite element analysis of fluid flows fully coupled with structural interactions,” Computers and Structures, vol. 72, no. 1–3, pp. 1–16, 1999.
[20]  N. Bouaanani and F. Y. Lu, “Assessment of potential-based fluid finite elements for seismic analysis of dam-reservoir systems,” Computers and Structures, vol. 87, no. 3-4, pp. 206–224, 2009.
[21]  L. G. Olson and K. J. Bathe, “A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems,” Nuclear Engineering and Design, vol. 76, no. 2, pp. 137–151, 1983.
[22]  L. G. Olson and K. J. Bathe, “An infinite element for analysis of transient fluid-structure interactions,” Engineering Computations, vol. 2, no. 4, pp. 319–329, 1985.
[23]  M. Zhang, Vibration analysis of solid-fluid interaction for the Pier-river water [M.S. thesis], Dalian Jiaotong University, 1993.
[24]  Pacific Earthquake Engineering Research Center (PEER), “NGA Database,” 2013, http://peer.berkeley.edu/nga/data?doi=NGA1660.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413