全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs

DOI: 10.1155/2013/340315

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs) can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained. 1. Introduction Oral administration is the most commonly preferred route for drug delivery because of its simplicity, convenience, and patient acceptance, especially in the case of repeated dosing for chronic therapy [1–3]. In contrast to the intravenous administration, which probably results in toxic blood level after injection and sometimes an under concentration of the desired threshold towards the end of the dosing interval, oral chemotherapy can provide a prolonged and continuous exposure to a relatively lower and thus safer concentration [2]. Now, more than 60% of marketed drugs are used as oral products [4]. However, it is intricate to formulate a therapeutic agent for oral administration. The bioavailability of oral drugs is strongly influenced by two important parameters, solubility and permeability [3]. Based on that, the Biopharmaceutic Classification System (BCS) defines four categories of drugs [5]. Many existing and new therapeutic entities are characterized as BCS class II (low solubility and high permeability) or BCS class IV (low solubility and low permeability). Poorly water-soluble drug candidates encountered in drug discovery cause increasing problems of poor and variable bioavailability. It is estimated that approximately 70% of new chemical entities are poorly soluble in aqueous medium and many even in organic medium. Besides, approximately 40% of currently marketed immediate-release oral drugs are considered practically insoluble (solubility less than 100?μg/mL) in water [6, 7]. Low

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133