全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cosmetotextiles with Gallic Acid: Skin Reservoir Effect

DOI: 10.1155/2013/456248

Full-Text   Cite this paper   Add to My Lib

Abstract:

The antioxidant gallic acid (GA) has been incorporated into cotton (CO) and polyamide (PA) through two different vehicles, that is, liposomes and mixed micelles, and their respective absorption/desorption processes have been studied. Moreover, in vitro percutaneous absorption tests of different cosmetotextiles have been performed to demonstrate antioxidant penetration within the layers of the skin. When GA was embedded into the cosmetotextiles, it always promoted a reservoir effect that was much more marked than that observed for polyamide. Similar penetration was observed in the textiles treated with GA in mixed micelles or liposomes in such compartments of the skin as the stratum corneum, epidermis, and even the dermis. GA was detected in receptor fluid only when CO was treated with MM. This methodology may be useful in verifying how encapsulated substances incorporated into textile materials penetrate human skin. Indeed, such materials can be considered strategic delivery systems that release a given active compound into the skin at specific doses. 1. Introduction Cosmetotextiles are garments designed to contact the skin with the aim of transferring active substances useful for cosmetic purposes, particularly to combat ageing effects [1–4]. In fact, there are already several textile products on the market that claim to have certain properties that are usually found in pharmaceuticals or cosmetics [3], such as moisturising, slimming, energising, refreshing, relaxing, vitalizing, or UV-protecting properties, or are simply perfume. There is a real need to develop test methods to demonstrate and verify the effectiveness and durability of these claimed properties [5]. Encapsulation is one of the techniques used to apply such substances to textiles [6]. Liposomes are biocompatible, biodegradable, and nontoxic artificial vesicles formed by lipids that can encapsulate many compounds (hydrophilic, hydrophobic, and amphiphilic) for application to textiles. Moreover, liposomes have been the subject of numerous studies because of their importance as microencapsulation devices for drug delivery and their applications in cosmetics [7–10]. In fact, one way of enhancing drugs’ skin penetration is the use of vesicular systems or liposomes [9, 10]. In this study, a new strategy to enhance the delivery of an active agent from a textile to the skin using mixed micelles (MMs) was investigated. The micelles are composed of a lipid and a surfactant and are capable of transforming into liposomes when the surfactant is eliminated by simple dilution with water. The potential

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133