全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fluoride in the Serra Geral Aquifer System: Source Evaluation Using Stable Isotopes and Principal Component Analysis

DOI: 10.1155/2013/309638

Full-Text   Cite this paper   Add to My Lib

Abstract:

Groundwater with anomalous fluoride content and water mixture patterns were studied in the fractured Serra Geral Aquifer System, a basaltic to rhyolitic geological unit, using a principal component analysis interpretation of groundwater chemical data from 309 deep wells distributed in the Rio Grande do Sul State, Southern Brazil. A four-component model that explains 81% of the total variance in the Principal Component Analysis is suggested. Six hydrochemical groups were identified. δ18O and δ2H were analyzed in 28 Serra Geral Aquifer System samples in order to identify stable isotopes patterns and make comparisons with data from the Guarani Aquifer System and meteoric waters. The results demonstrated a complex water mixture between the Serra Geral Aquifer System and the Guarani Aquifer System, with meteoric recharge and ascending water infiltration through an intensive tectonic fracturing. 1. Introduction In the last several decades, the global water consumption has dramatically increased, especially for agriculture, water supply, and industrial uses. This paper examines the fluoride content in water from the southernmost region of the fractured subcontinental Serra Geral Aquifer System (SGAS), an important aquifer that supplies a large amount of water for an economic developed region in Southern Brazil. Fluoride content in water is beneficial to human health and in a moderate concentration (0.7–1.2?mg/L) prevents dental cavities. When used in excess can be toxic causing human and animal dental and skeletal fluorosis, which has been detected in China [1, 2], India [3], Kenya [4], and Israel [5], among other countries. The drinking water limit recommended by the World Health Organization for fluoride is 1.5?mg/L [6]. In the study area, the SGAS fluoride average concentrations are around 0.24?mg/L, with a minimum value of 0.02?m/L and the highest at 3.03?mg/L. The SGAS overlies the Guarani Aquifer System (GAS; [7]), which has been the focus of several recent studies due to its spatial extent and storage potential as a transboundary aquifer [8]. The area covered by the SGAS in Brazil, Uruguay, Argentina, and Paraguay is equivalent to 1,200,000?km2 (Figure 1). In Brazil, these groundwater resources should be efficiently managed to protect its water potential and quality. The climate in the study area ranges from subtropical to temperate, with precipitation average of 1,550?mm/year. Figure 1: Location map showing the Serra Geral Formation (SGF) in South America (modified from [ 9]). The SGAS reaches its maximum thickness of about 1,800?m along the central

References

[1]  N. Lin, J. Tang, and J. Bian, “Geochemical environment and health problems in China,” Environmental Geochemistry and Health, vol. 26, no. 1, pp. 81–88, 2004.
[2]  W. Genxu and C. Guodong, “Fluoride distribution in water and the governing factors of environment in arid north-west China,” Journal of Arid Environments, vol. 49, no. 3, pp. 601–614, 2001.
[3]  V. Vijaya Kumar, C. S. T. Sai, P. L. K. M. Rao, and C. S. Rao, “Studies on the distribution of fluoride in drinking water sources in Medchal Block, Ranga Reddy District, Andhra Pradesh, India,” Journal of Fluorine Chemistry, vol. 55, no. 3, pp. 229–236, 1991.
[4]  W. K. Moturi, M. P. Tole, and T. C. Davies, “The contribution of drinking water towards dental fluorosis: a case study of Njoro division, Nakuru district, Kenya,” Environmental Geochemistry and Health, vol. 24, no. 2, pp. 123–130, 2002.
[5]  U. Kafri, A. Arad, and L. Halicz, “Fluorine occurrence in groundwater in Israel and its significance,” Journal of Hydrology, vol. 106, no. 1-2, pp. 109–129, 1989.
[6]  WHO, Fluorides, Environmental Health Criteria no. 227, United Nations Environmental Programme, International Labour Organization, World Health Organization, Geneva, Switzerland, 2002.
[7]  H. C. N. S. Campos, “Modelación conceptual y matemática del acuífero guaraní, Cono Sur,” Acta Geológica Leopoldensia, vol. 23, no. 4, pp. 3–50, 2000.
[8]  L. M. Aráujo, A. B. Fran?a, and P. E. Potter, “Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná Basins, South America, and comparison with the Navajo-Nugget aquifer system, USA,” Hydrogeology Journal, vol. 7, no. 3, pp. 317–336, 1999.
[9]  A. Batezelli, A. R. Saad, V. J. Fulfaro, A. C. Corsi, P. M. B. Landim, and J. A. J. Perinotto, “Análise de bacia aplicada às unidades mesozoicas do triangulo mineiro (sudeste do Brasil): uma estratégia na prospec??o de recursos hídricos subterraneos,” águas Subterraneas, vol. 19, no. 1, pp. 61–73, 2005.
[10]  P. A. R. Reginato and A. J. Strieder, “Integra??o de dados geológicos na prospec??o de aqüíferos fraturados na Forma??o Serra Geral,” Revista águas Subterraneas, vol. 20, no. 1, pp. 1–14, 2006.
[11]  M. Szikszay, J. Teissedre, U. Barner, and E. Matsui, “Geochemical and isotopic characteristics of spring and groundwater in the State of S?o Paulo, Brazil,” Journal of Hydrology, vol. 54, no. 1–3, pp. 23–32, 1981.
[12]  G. Fraga, Origem de fluoreto em águas subterraneas dos Sistemas Aqüíferos Botucatu e Serra Geral da Bacia do Paraná [Ph.D. thesis], Programa de Pós-Gradua??o em Recursos Minerais e Hidrogeologia, Universidade de S?o Paulo, 1992.
[13]  C. V. Portela Filho, F. J. F. Ferreira, E. F. Rosa Filho, A. C. Buchmann, and S. P. Rostirolla, “Estudo preliminar da conex?o entre os aquíferos Serra Geral e Guarani com base em dados aeromagnetométricos e hidroquímicos,” in XII Congresso Brasileiro de águas Subterraneas, vol. 1, pp. 74–86, Editora da ABAS, S?o Paulo, Brazil, 2002.
[14]  C. V. Portela Filho, F. J. F. Ferreira, E. F. Rosa Filho, A. C. Buchmann, and S. Rostirolla, “Compartimenta??o magnética-estrutural do sistema aquífero Serra Geral e sua conectividade com o Sistema Aqüífero Guarani na regi?o central do arco de Ponta Grossa (Bacia do Paraná),” Revista Brasileira de Geociências, vol. 3, pp. 369–381, 2005.
[15]  J. L. F. Machado, Compartimenta??o espacial e arcabou?o hidroestratigráfico do Sistema Aqüífero Guarani no Rio Grande do Sul [Ph.D. thesis], Programa de Pós-Gradua??o em Geologia—área de Concentra??o em Geologia Sedimentar, Universidade do Vale do Rio Dos Sinos, S?o Leopoldo, Brazil, 2005.
[16]  L. F. Scheibe and R. Hirata, “O contexto tect?nico dos sistemas aqüíferos guarani e serra geral em santa catarina: uma revis?o,” in XV Congresso Brasileiro de águas Subterraneas, pp. 1–14, Associa??o Brasileira de águas Subterraneas, Curitiba, Brazil, 2008.
[17]  N. A. Lisboa, Fácies, estratifica??es hidrogeoquímicas e seus controladores geológicos, em unidades hidrogeológicas do Sistema Aqüífero Serra Geral, na Bacia do Paraná, Rio Grande do Sul [Ph.D. thesis], Curso de Pós-Gradua??o em Geociências, Universidade Federal do Rio Grande do Sul, 1996.
[18]  N. A. Lisboa and E. Menegotto, “Diferencia??es hidrogeoquímicas no sistema aqüífero Serra Geral no Rio Grande do Sul,” in XII Simpósio Brasileiro de Recursos Hídricos, pp. 489–496, 1997.
[19]  A. Nanni, A. Roisenberg, M. P. C. Marimon, and A. P. Viero, “The hydrochemical facies and anomalous fluoride content in the Serra Geral aquifer system, southern Brazil: a GIS approach with tectonic and principal component analysis,” Environmental Geology, vol. 58, no. 6, pp. 1247–1255, 2009.
[20]  A. A. Kimmelmann e Silva, A. C. Reboucas, and M. M. F. Santiago, “14C analyses of groundwater from the Botucatu Aquifer System in Brazil,” Radiocarbon, vol. 31, no. 3, pp. 926–933, 1989.
[21]  A. Nanni, A. Roisenberg, J. M. G. Fachel, G. Mesquita, and C. Danieli, “Fluoride characterization by principal component analysis in the hydrochemical facies of Serra Geral Aquifer System in Southern Brazil,” The Anais da Academia Brasileira de Ciências, vol. 80, no. 4, pp. 693–701, 2008.
[22]  O. A. B. Licht, A geoquímica multielementar na gest?o ambiental—identifica??o e caracteriza??o de províncias geoquímicas naturais, altera??es antrópicas da paisagem, áreas favoráveis à prospec??o mineral e regi?es de risco para a saúde no estado do Paraná, Brasil [Ph.D. thesis], Pós-Gradua??o em Geologia, área de Concentra??o—Geologia Ambiental, Setor de Ciências da Terra, Universidade Federal do Paraná, Curitiba, Brazil, 2001.
[23]  A. V. L. Bittencourt, E. F. Rosa Filho, E. C. Hindi, and A. C. Buchmann Filho, “A influência dos basaltos e de misturas com águas de aquíferos sotopostos nas águas subterraneas do Sistema Aqüífero Serra- Geral na bacia do rio piquiri, Paraná—BR,” Revista águas Subterraneas, vol. 17, pp. 67–75, 2003.
[24]  O. Sracek and R. Hirata, “Geochemical and stable isotopic evolution of the Guarani Aquifer System in the state of S?o Paulo, Brazil,” Hydrogeology Journal, vol. 10, no. 6, pp. 643–655, 2002.
[25]  E. F. Rosa Filho, J. X. Montano, and U. Duarte, “Estudo do movimento das águas subterraneas do Sistema Aqüífero Guarani (SAG) através de isótopos, no Paraná, S?o Paulo e no Uruguai,” Revista Latino Americana de Hidrogeologia, pp. 109–121, 2007.
[26]  A. O. Invernizzi and S. M. B. Oliveira, “Hydrochemical characterization of a watershed through factor analysis,” Revista de águas Subterraneas, vol. 18, pp. 67–77, 2004.
[27]  H. F. Kaiser, “The varimax criterion for analytic rotation in factor analysis,” Psychometrika, vol. 23, no. 3, pp. 187–200, 1958.
[28]  M. P. Marimom, Origem das Anomalias de Fluoreto nas águas Subterraneas utilizadas para abastecimento público da Forma??o Santa Maria, Estado do Rio Grande do Sul, Brasil [Ph.D. thesis], Curso de Pós-gradua??o em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2006.
[29]  IAEA—International Atomic Energy Agency, Isotope Hydrology Information System, the ISOHIS Database, 2004, http://isohis.iaea.org.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133