全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects

DOI: 10.1155/2013/805451

Full-Text   Cite this paper   Add to My Lib

Abstract:

Al-Haruj basalts that represent the largest volcanic province in Libya consist of four lava flow phases of varying thicknesses, extensions, and dating. Their eruption is generally controlled by the larger Afro-Arabian rift system. The flow phases range from olivine rich and/or olivine dolerites to olivine and/or normal basalts that consist mainly of variable olivine, clinopyroxene, plagioclase, and glass. Olivine, plagioclase, and clinopyroxene form abundant porphyritic crystals. In olivine-rich basalt and olivine basalt, these minerals occur as glomerophyric or seriate clusters of an individual mineral or group of minerals. Groundmass textures are variably intergranular, intersertal, vitrophyric, and flow. The pyroclastic, clastogenic flows and/or ejecta of the volcanic cones show porphyritic, vitrophric, pilotaxitic, and vesicular textures. They are classified into tholeiite, alkaline, and olivine basalts. Three main groups are recorded. Basalts of phase 1 are generated from tholeiitic to alkaline magma, while those of phases 3 and 4 are derived from alkaline magma. It is proposed that the tholeiitic basalts represent prerift stage magma generated by higher degree of partial melting (2.0–3.5%) of garnet-peridotite asthenospheric mantle source, at shallow depth, whereas the dominant alkaline basalts may represent the rift stage magma formed by low degree of partial melting (0.7–1.5%) and high fractionation of the same source, at greater depth in an intra-continental plate with OIB affinity. The melt generation could be also attributed to lithosphere extension associated with passive rise of variable enriched mantle. 1. Introduction The volcanic rocks territory of Libya ranging in age from the Eocene to present day occur. The age of these predominantly basaltic rocks decreases from north to south. The Central Al-Haruj Al-Abyad (CHA) basalt flows cover the southern part of the Al-Haruj total volcanic province between 26°N and 26° 30′N latitudes and 16° 45′E and 18°E longitudes in the central Libya. It is featured by close structural and genetic relationship with the Al-Haruj al-Abyad total volcanic system, so the present authors adopt a similar classification of the volcanic pile as it had been elaborated in the previous works [1–3] distinguishing 4 major eruption phases and 11 subphases or flow units. The origin of the volcanism is still not clear. The Al-Haruj flood basalt field (45,000?km2) is the largest of four Tertiary to Recent volcanic provinces in central Libya [1] (Figure 1). The CHA falls within the Al-Haruj basalt field; it is located

References

[1]  M. T. Busrewil and K. S. Suwesi, “Explanatory booklet for the Geological Map of Libya (1:250, 000). Sheet,” Al Haruj Al Aswad NG, (33-4), Industrial Research Centre, Tripoli, Libya, 1993.
[2]  Z. Peregi, G. Y. Less, G. Y. Konrad et al., “Explanation booklet, Geological map of Libya, 1:250, 000. Sheet,” Al Haruj Al Abyad NG 33-8, Industrial Research Center, Tripoli, Libya, 2003.
[3]  K. Németh, “The morphology and origin of wide craters at Al Haruj al Abyad, Libya: maars and phreatomagmatism in a large intracontinental flood lava field?” Zeitschrift fur Geomorphologie, vol. 48, no. 4, pp. 417–439, 2004.
[4]  E. Klitzsch, “Der Basaltvulkanismus des Djebel Haroudj Ostfezzan/Libyen,” Geologische Rundschau, vol. 57, no. 2, pp. 585–601, 1968.
[5]  V. Cvetkovi?, M. Tolji?, N. A. Ammar, L. Rundi?, and K. B. Trish, “Petrogenesis of the eastern part of the Al Haruj basalts (Libya),” Journal of African Earth Sciences, vol. 58, no. 1, pp. 37–50, 2010.
[6]  K. H. Ne'meth, K. S. Suwesi, Z. Peregi, Z. Gula'csi, and J. Ujsza'szi, “Plio/Pleistocene flood basalt related scoria and spatter cones, rootless lava flows, and pit craters, A1 Haruj A1 Abyad, Libya,” Geolines, pp. 98–103, 2003.
[7]  E. S. Farahat, M. S. A. Ghani, A. S. Aboazom, and A. M. H. Asran, “Mineral chemistry of Al Haruj low-volcanicity rift basalts, Libya: implications for petrogenetic and geotectonic evolution,” Journal of African Earth Sciences, vol. 45, no. 2, pp. 198–212, 2006.
[8]  F. M. Ade-Hall, P. H. Reynolds, P. Dagley, A. G. Musset, T. B. Hubbard, and E. Klitsch, “Geophysical studies of North African Cenozoic volcanic areas 1—Haruj Assuad, Libya,” Canadian Journal of Earth Sciences, vol. 11, pp. 998–1006, 1974.
[9]  P. M. Vincent, “The evolution of Tibesti volcanic province, Eastern Sahara,” in African Magmatism and Tectonics, T. N. Clifford and I. G. Gass, Eds., pp. 301–319, Oliver and Boyd, Edinburgh, UK, 1970.
[10]  G. H. Goudarzi, “Structure-Libya,” in The Geology of Libya, M. J. Salem and M. T. Busrewil, Eds., vol. 3, pp. 879–892, Academic Press, London, UK, 1980.
[11]  F. Woller and F. Fediuk, “Volcanic rocks of Jabal as Sawada,” The Geology of Libya, vol. 3, pp. 1081–1093, 1980.
[12]  M. J. Le Bas, R. W. L. Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” Journal of Petrology, vol. 27, no. 3, pp. 745–750, 1986.
[13]  J. A. Winchester and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chemical Geology, vol. 20, pp. 325–343, 1977.
[14]  M. T. Busrewil and W. J. Wadsworth, “Preliminary chemical data on the volcanic rocks of Al Haruj area, central Libya,” in The Geology of Libya, M. J. Salem and M. T. Busrewil, Eds., pp. 1077–1080, Academic Press, London, UK, 1980.
[15]  F. Woller, “Explanatory booklet. Geological map of Libya 1:250, 000, sheet,” Al Fuqaha NG 33-3, Industrial Re-search Centre, Tripoli, Libya, 1984.
[16]  S. Z. Harangi, Petrology and Geochemistry of Basaltic Rocks, Al Haruj Area, Libya, Industrial Research Centre, Tripoli, Libya, 2002.
[17]  J.-M. Bardintzeff, C. Deniel, H. Guillou, B. Platevoet, P. Télouk, and K. M. Oun, “Miocene to recent alkaline volcanism between Al Haruj and Waw an Namous (southern Libya),” International Journal of Earth Sciences, vol. 101, no. 4, pp. 1047–1063, 2012.
[18]  M. T. Busrewil, The petrology and geochemistry of Tertiary volcanic rocks from Ghirian area, Tripolitania, Libya [Ph.D. thesis], University of Manchester, 1974.
[19]  M. T. Busrewil and W. J. Wadsworth, “The basalts and associated lherzolite xenoliths of Waw-an-Namus volcano,” Libyan Journal of Science, vol. 12, pp. 19–28, 1983.
[20]  F. Woller, “Explanatory booklet. Geological map of Libya 1:250 000, sheet,” Al Washkah NH 33-15, Industrial Research Centre, Tripoli, Libya, 1978.
[21]  J. Vesely, “Explanatory booklet. Geological map of Libya 1:250, 000, Sheet,” Zallah NH-33-16, Industrial Research Centre, Tripoli, Libya, 1985.
[22]  K. Burke, “The African plate,” South African Journal of Geology, vol. 99, pp. 339–340, 1996.
[23]  K. Burke, “Origin of the cameroon line of volcano-capped swells,” Journal of Geology, vol. 109, no. 3, pp. 349–362, 2001.
[24]  G. Franz, C. Breitkreuz, D. A. Coyle et al., “The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan),” Journal of African Earth Sciences, vol. 25, no. 2, pp. 263–291, 1997.
[25]  G. Y. Less, S. M. Turki, Z. Peregi et al., “Explanation booklet, Geological map of Libya, 1:250, 000. Sheet,” Waw Al Kabir NG 33-12, Industrial Research Centre, Tripoli, Libya, 2006.
[26]  D. Mckenzie and R. K. O'nions, “Partial melt distributions from inversion of rare earth element concentrations,” Journal of Petrology, vol. 32, no. 5, pp. 1021–1091, 1991.
[27]  M. Meschede, “A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb1bZr1bY diagram,” Chemical Geology, vol. 56, no. 3-4, pp. 207–218, 1986.
[28]  B. Cabanis and M. Lecolle, “Le diagramme La/10- Y/15- Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale,” Comptes Rendus de l'Académie des Sciences. II, vol. 309, pp. 2023–2029, 1989.
[29]  D. A. Wood, J.-L. Joron, and M. Treuil, “A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings,” Earth and Planetary Science Letters, vol. 45, no. 2, pp. 326–336, 1979.
[30]  J. F. Minster and C. J. Allègre, “Systematic use of trace elements in igneous processes—part III: inverse problem of batch partial melting in volcanic suites,” Contributions to Mineralogy and Petrology, vol. 68, no. 1, pp. 37–52, 1978.
[31]  M. Treuil, J. L. Joron, H. M. Jaffrezic, B. Villemant, and G. Calas, “Geochemie des elements hygromagmaphiles, coefficients de partage mineraux/liquide et proprietes structurales de ces elements dans les liquids magmatiques,” Bulletin Mineralogique, vol. 102, pp. 402–409, 1979.
[32]  J.-M. Cebriá and J. López-Ruiz, “A refined method for trace element modelling of nonmodal batch partial melting processes: the Cenozoic continental volcanism of Calatrava, central Spain,” Geochimica et Cosmochimica Acta, vol. 60, no. 8, pp. 1355–1366, 1996.
[33]  H. Nicholson and D. Latin, “Olivine tholeiites from krafla, Iceland: evidence for variations in melt fraction within a plume,” Journal of Petrology, vol. 33, no. 5, pp. 1105–1124, 1992.
[34]  P. Sprung, S. Schuth, C. Münker, and L. Hoke, “Intraplate volcanism in New Zealand: the role of fossil plume material and variable lithospheric properties,” Contributions to Mineralogy and Petrology, vol. 153, no. 6, pp. 669–687, 2007.
[35]  S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, pp. 313–345, 1989.
[36]  A. W. Hoffman, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements,” in The Mantle and Core, 2, Treatise on Geochemistry, R. W. Carlson, H. Holland, and K. K. Turekian, Eds., pp. 61–101, El Sevier-Pergamon, Oxford, UK, 2003.
[37]  D. J. Chaffey, R. A. Cliff, and B. M. Wilson, “Characterization of the St Helena magma source,” Magmatism in the Ocean Basins, vol. 42, pp. 257–276, 1989.
[38]  A. P. Le Roex, “Geochemistry, mineralogy and magmatic evolution of the basaltic and trachytic lavas from Gough Island, South Atlantic,” Journal of Petrology, vol. 26, no. 1, pp. 149–186, 1985.
[39]  A. Zindler and S. Hart, “Chemical geodynamics,” Annual review of Earth and planetary sciences, vol. 14, pp. 493–571, 1986.
[40]  S. Pilet, J. Hernandez, P. Sylvester, and M. Poujol, “The metasomatic alternative for ocean island basalt chemical heterogeneity,” Earth and Planetary Science Letters, vol. 236, no. 1-2, pp. 148–166, 2005.
[41]  Y. Weinstein, O. Navon, R. Altherr, and M. Stein, “The role of lithospheric mantle heterogeneity in the generation of Plio-Pleistocene alkali basaltic suites from NW Harrat Ash Shaam (Israel),” Journal of Petrology, vol. 47, no. 5, pp. 1017–1050, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413