全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Magmatism in the Asunción-Sapucai-Villarrica Graben (Eastern Paraguay) Revisited: Petrological, Geophysical, Geochemical, and Geodynamic Inferences

DOI: 10.1155/2013/590835

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Asunción-Sapucai-Villarrica graben (ASV) in Eastern Paraguay at the westernmost part of the Paraná Basin was the site of intense magmatic activity in Mesozoic and Tertiary times. Geological, petrological, mineralogical, and geochemical results indicate that the following magmatic events are dominant in the area: (1) tholeiitic basalt and basaltic andesites, flows and sills of low- and high-titanium types; (2) K-alkaline magmatism, where two suites are distinguished, that is, basanite to phonolite and alkali basalt to trachyte and their intrusive analogues; (3) ankaratrite to phonolite with strong Na-alkaline affinity, where mantle xenoliths in ultramafic rocks are high- and low-potassium suites, respectively. The structural and geophysical data show extensional characteristics for ASV. On the whole, the geochemical features imply different mantle sources, consistently with Sr-Nd isotopes that are Rb-Nd enriched and depleted for the potassic and sodic rocks, respectively. Nd model ages suggest that some notional distinct “metasomatic events” may have occurred during Paleoproterozoic to Neoproterozoic times as precursor to the alkaline and tholeiitic magmas. It seems, therefore, that the genesis of the ASV magmatism is dominated by a lithospheric mantle, characterized by small-scale heterogeneity. 1. Introduction Velázquez et al. [1] presented a structural analysis of the central segment of the “Asunción Rift,” mainly based on the previous papers related to the Eastern Paraguay magmatism in general, and to the Asunción-Sapucai-Villarrica graben (ASV) in particular, and also based on extensive field data collected earlier on the dyke swarms cropping out in the area. However, some aspects as, for example, the close association in space of potassic and sodic alkaline rock-types with tholeiitic dykes and flows (both of high- and low-Ti types; cf. [2]), have not been discussed in detail by the above authors. This paper focuses on general aspects of the magmatism from the western margin of the Paraná-Angola-Etendeka system (PAE), where tholeiitic flows and dykes (Early Cretaceous, both of high-Ti and low-Ti types; cf. Figure 1(a) and [3]) are associated in time and space with a wide variety of alkaline rock-types (both potassic and sodic) and carbonatites. Figure 1: (a) Sketch map of the Paraná-Angola-Etendeka system [ 3] where the arrows indicate the occurrences of the main dyke swarms. The basaltic lavas are subdivided into broad high- and low-Ti groups and late-stage rhyolites (yellow fields). EP: Eastern Paraguay. (b) Main lineaments in the

References

[1]  V. C. Velázquez, C. B. Gomes, C. Riccomini, and J. Kirk, “The cretaceous alkaline dyke swarm in the central segment of the Asunción rift, eastern Paraguay: its regional distribution, mechanism of emplacement, and tectonic significance,” Journal of Geological Research, vol. 2011, Article ID 946701, 18 pages, 2011.
[2]  G. Bellieni, P. C. Chiaramonti, L. S. Marques et al., “Continental flood basalts from the central-western regions of the Parana plateau (Paraguay and Argentina): petrology and petrogenetic aspects,” Neues Jahrbuch für Mineralogie, Abhandlungen, vol. 154, no. 2, pp. 111–139, 1986.
[3]  E. M. Piccirillo and A. J. Melfi, Eds., The Mesozoic Flood Volcanism of the Paranà Basin: Petrogenetic and Geophysical Aspects, IAG, S?o Paulo, Brazil, 1988.
[4]  P. Comin-Chiaramonti, A. Marzoli, C. De Barros Gomes et al., “The origin of post-Paleozoic magmatism in eastern Paraguay,” Special Paper of the Geological Society of America, no. 430, pp. 603–633, 2007.
[5]  P. Comin-Chiaramonti, C. B. Gomes, M. Ernesto, A. Marzoli, and C. Riccomini, Eastern Paraguay: Post-Paleozoic Magmatism, Large Igneous Province of the Month, 2007, http://www.largeigneousprovinces.org/07jan.
[6]  P. Comin-Chiaramonti, A. De Min, V. A. V. Girardi, and E. Ruberti, “Post-Paleozoic magmatism in Angola and Namibia: a review,” in Volcanism and Evolution of the African Lithosphere, the Geological Society of America, L. Beccaluva, G. Bianchini, and M. Wilson M, Eds., Special Paper 478, pp. 223–247, 2011.
[7]  J. D. Fairhead and M. Wilson, “Plate tectonic processes in the South Atlantic Ocean: do we need deep mantle plumes?” Special Paper of the Geological Society of America, no. 388, pp. 537–553, 2005.
[8]  P. V. Zalan, S. Wolff, M. A. Astolfi, et al., “The Paraná basin, Brazil,” in Interior Cratonic Basins, M. W. Leighton, D. R. Kolata, D. F. Oltz, and J. J. Eidel, Eds., vol. 51 of Memoir, pp. 601–708, American Association of Petroleum Geology, Tulsa, Okla, USA, 1990.
[9]  J. J. W. Rogers, R. Unrug, and M. Sultan, “Tectonic assembly of Gondwana,” Journal of Geodynamics, vol. 19, no. 1, pp. 1–34, 1995.
[10]  P. Comin-Chiaramonti, A. Cundari, E. M. Piccirillo et al., “Potassic and sodic igneous rocks from Eastern Paraguay: their origin from the lithospheric mantle and genetic relationships with the associated Paraná flood tholeiites,” Journal of Petrology, vol. 38, no. 4, pp. 495–528, 1997.
[11]  M. Feng, V. D. S. Lee, and M. Assump??o, “Upper mantle srructure of South America from joint inversions of waveforms and fundamental mode group velocities of Rayleigh waves,” Journal of Geophysical Research, vol. 112, pp. 1–16, 2007.
[12]  P. Comin-Chiaramonti, A. Cundari, J. M. DeGraff, C. B. Gomes, and E. M. Piccirillo, “Early Cretaceous-Tertiary magmatism in Eastern Paraguay (western Parana basin): geological, geophysical and geochemical relationships,” Journal of Geodynamics, vol. 28, no. 4-5, pp. 375–391, 1999.
[13]  P. Comin-Chiaramonti, A. Cundari, C. B. Gomes et al., “Potassic dyke swarm in the Sapucai Graben, eastern Paraguay: petrographical, mineralogical and geochemical outlines,” LITHOS, vol. 28, no. 3–6, pp. 283–301, 1992.
[14]  C. Riccomini, V. F. Velázquez, and C. De Barros Gomes, “Cenozoic lithospheric faulting in the Asunción Rift, eastern Paraguay,” Journal of South American Earth Sciences, vol. 14, no. 6, pp. 625–630, 2001.
[15]  Anschutz Co., Geologic Map of Eastern Paraguay (1:500,000), F. Wiens Compiler, Denver, Colo, USA, 1981.
[16]  M. D. Druecker and S. P. Gay Jr., “Mafic dyke swarms associated with Mesozoic rifting in Eastern Paraguay, South America,” in Mafic Dyke Swarms, Geological Association of Canada, H. C. Halls and A. R. Fahrig, Eds., pp. 187–193, 1987.
[17]  N. Ussami, A. Kolisnyk, M. I. B. Raposo, F. J. F. Ferreira, E. C. Molina, and M. Ernesto, “Detectabilitade magnetica de diques do Arco de Ponta Grossa: um estudo integrado de magnetometria terrestre/aerea e magnetismo de rocha,” Revista Brasileira de Geociências, vol. 21, pp. 317–327, 1994.
[18]  J. M. de Graff, “Late Mesozoic crustal extension and rifting on the western edge of the Paraná Basin, Paraguay,” Geological Society of America, Abstracts with Programs, vol. 17, p. 560, 1985.
[19]  PHOTO GRAVITY Co., Regional Bouguer Gravity Data and Station Location Map of the Paraguay (Scale 1:2,000,000), Archivo DRM-MOPC, Asunción, Paraguay, 1991.
[20]  D. S. Hutchinson, “Geology of the Apa High,” Internal Report, TAC, Asunción, Paraguay, 1979.
[21]  F. Wiens, “Mapa geologica de la region oriental, Republica del Paraguay, escala 1:500,0002,” Simposio Recursos Naturales, Paraguay, Asunción, p. 9, 1982.
[22]  R. A. Livieres and H. Quade, “Distribución regional y asentamiento tectónico de los complejos alcalinos del Paraguay,” Zentralblatt für Geologie und Pal?ontologie, vol. 7, pp. 791–805, 1987.
[23]  A. Kanzler, “The southern Precambrian in Paraguay. Geological inventory and age relations,” Zentralblatt für Geologie und Pal?ontologie, vol. 7, pp. 753–765, 1987.
[24]  P. Comin-Chiaramonti and C. B. Gomes, Eds., Alkaline Magmatism in Central-Eastern Paraguay. Relationships with Coeval Magmatism in Brazil, Edusp/Fapesp, S?o Paulo, Brazil, 1996.
[25]  P. R. Renne, M. Ernesto, I. G. Pacca et al., “The age of Paraná flood volcanism, rifting of gondwanaland, and the Jurassic-Cretaceous boundary,” Science, vol. 258, no. 5084, pp. 975–979, 1992.
[26]  P. R. Renne, D. F. Mertz, W. Teixeira, H. Ens, and M. Richards, “Geochronologic constraints on magmatic and tectonic evolution of the Paraná Province,” The American Geophysical Union, vol. 74, abstract, p. 553, 1993.
[27]  P. R. Renne, K. Deckart, M. Ernesto, G. Féraud, and E. M. Piccirillo, “Age of the Ponta Grossa dike swarm (Brazil), and implications to Paraná flood volcanism,” Earth and Planetary Science Letters, vol. 144, no. 1-2, pp. 199–211, 1996.
[28]  C. B. Gomes, P. Comin-Chiaramonti, and V. F. Velázquez, “The Mesoproterozoic rhyolite occurrences of Fuerte Olimpo and Fuerte San Carlos, Northern Paraguay,” Revista Brasileira De Geociências, vol. 30, pp. 785–788, 2000.
[29]  J. Berrocal and C. Fernandes, “Seismicity in Paraguay and neighbouring regions,” in Alkaline Magmatism in Central-Eastern Paraguay, Relationships with Coevalmagmatism in Brazil, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 57–66, Edusp/Fapesp, S?o Paulo, Brazil, 1996.
[30]  A. Tommasi and A. Vauchez, “Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle,” Earth and Planetary Science Letters, vol. 185, no. 1-2, pp. 199–210, 2001.
[31]  P. F. Green, I. R. Duddy, P. O’Sullivan, K. A. Hegarty, P. Comin-Chiaramonti, and C. B. Gomes, “Mesozoic potassic magmatism from the Asunción-Sapucai graben: apatite fission track analysis of the Acahai suite and implication for hydrocarbon exploration,” Geochimica Brasiliensis, vol. 5, pp. 79–88, 1991.
[32]  K. A. Hegarty, I. R. Duddy, and P. F. Green, “The thermal history in around the Paraná basin using apatite fission track analysis-implications for hydrocarbon occurrences and basin formation,” in Alkaline magmatism in Central-Eastern Paraguay, Relationships with Coevalmagmatism in Brazil, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 67–84, Edusp/Fapesp, S?o Paulo, Brazil, 1996.
[33]  P. Comin-Chiaramonti, A. De Min, and C. B. Gomes, “Magmatic rock-types from the Asunción-Sapucai graben: description of the occurrences and petrographical notes,” in Alkaline Magmatism in Central-Eastern Paraguay, Relationships with coevalmagmatism in Brazil, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 275–330, Edusp/Fapesp, S?o Paulo, Brazil, 1996.
[34]  P. Comin-Chiaramonti, A. De Min, and A. Marzoli, “Magmatic rock-types from the Asunción-Sapucai graben: chemical analyses,” in Alkaline Magmatism in Central-Eastern Paraguay, Relationships with coevalmagmatism in Brazil, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 331–387, Edusp/Fapesp, S?o Paulo, Brazil, 1996.
[35]  P. Comin-Chiaramonti, A. Cundari, and G. Bellieni, “Mineral analyses of alkaline rock-types from the Asunción-Sapucai graben,” in AlkalIne Magmatism in Central-Eastern Paraguay, Relationships with coevalmagmatism In Brazil, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 389–458, Edusp/Fapesp, S?o Paulo, Brazil, 1996.
[36]  P. Comin-Chiaramonti, A. Cundari, A. De Min, C. B. Gomes, and V. F. Velázquez, “Magmatism in Eastern Paraguay: occurrence and petrography,” in Alkaline Magmatism in Central-Eastern Paraguay, Relationships with coevalmagmatism in Brazil, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 103–122, Edusp/Fapesp, S?o Paulo, Brazil, 1996.
[37]  J. M. de Graff, S. P. Gay Jr., and D. Orué, “Interpretación geofísica and geológica del Valle de Ypacaraí (Paraguay) y su formación,” Revista de la Asociación Geológica Argentina, vol. 36, no. 3, pp. 240–256, 1981.
[38]  M. Ernesto, P. Comin-Chiaramonti, C. B. Gomes, A. M. C. Castillo, and V. F. Velazquez, “Palaeomagnetic data from the central alkaline province, Eastern Paraguay,” in Alkaline Magmatism in Central-Eastern Paraguay, Relationships with coevalmagmatism in Brazil, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 85–102, Edusp/Fapesp, S?o Paulo, Brazil, 1996.
[39]  H. de La Roche, “Classification and nomenclature des roches ignées: un essai de restauration de la convergence entre systématique quantitative, typologie d’usage et modélisation génétique,” Bulletin de la Societé Geologique de France, vol. 8, pp. 337–353, 1986.
[40]  R. P. Le Maitre, A Classification of Igneous Rocks and Glossary of Terms, Blackwell, Oxford, UK, 1989.
[41]  A. Streckeisen, “To each plutonic rock its proper name,” Earth Science Reviews, vol. 12, no. 1, pp. 1–33, 1976.
[42]  C. B. Gomes, P. Comin-Chiaramonti, A. DeMin et al., “Atividade filoniana asociada ao complexo alcalino de Sapukai, Paraguay Oriental,” Geochimica Brasiliensis, vol. 3, pp. 93–114, 1989.
[43]  G. Bellieni, P. Comin-Chiaramonti, L. S. Marques et al., “Petrogenetic aspects of acid and basaltic lavas from the Paraná plateau (Brazil): geological, mineralogical and petrochemical relationships,” Journal of Petrology, vol. 27, no. 4, pp. 915–944, 1986.
[44]  P. Comin-Chiaramonti, C. B. Gomes, P. Censi, A. DeMin, S. Rotolo, and V. F. Velazquez, “Geoquimica do magmatismo Post-Paleozoico no Paraguai Centro-Oriental,” Geochimica Brasiliensis, vol. 7, pp. 19–34, 1993.
[45]  G. Bellieni, P. Comin-Chiaramonti, L. S. Marques et al., “High- and low-TiO2 flood basalts of Paraná plateau (Brazil): petrology, petrogenetic aspects and mantle source relationships,” Neues Jahrbuch für Mineralogie Abhandlungen, vol. 150, pp. 273–306, 1984.
[46]  E. M. Piccirillo, G. Bellieni, P. Comin-Chiaramonti et al., “Continental flood volcanism from the Parana' Basin (Brazil),” in Continental Flood Volcanism, J. D. McDougal, Ed., pp. 195–238, Kluver Academic, London, UK, 1988.
[47]  E. M. Piccirillo, L. Civetta, R. Petrini et al., “Regional variations within the Paraná flood basalts (southern Brazil): evidence for subcontinental mantle heterogeneity and crustal contamination,” Chemical Geology, vol. 75, no. 1-2, pp. 103–122, 1989.
[48]  P. Comin-Chiaramonti, P. Censi, A. Cundari, and C. B. Gomes, “A silico-beforsitic flow from the Sapucai Complex (central-eastern Paraguay),” Geochimica Brasiliensis, vol. 6, no. 1, pp. 87–91, 1992.
[49]  P. Comin-Chiaramonti, A. Cundari, C. B. Gomes et al., “Mineral chemistry and its genetic significance of major and accessory minerals from a potassic dyke swarm in the Sapucai graben, Central-Eastern Paraguay,” Brasileira Geoquímica, vol. 4, pp. 175–206, 1990.
[50]  G. Faure, Origin of Igneous Rocks: The Isotopic Evidence, Springer, Berlin, Germany, 2001.
[51]  A. D. Edgar, “Role of subduction in the genesis of leucite-bearing rocks: discussion,” Contributions to Mineralogy and Petrology, vol. 73, no. 4, pp. 429–431, 1980.
[52]  A. Cundari and A. K. Ferguson, “Significance of the pyroxene chemistry from leucite-bearing and related assemblages,” TMPM Tschermaks Mineralogische und Petrographische Mitteilungen, vol. 30, no. 3, pp. 189–204, 1982.
[53]  P. Comin-Chiaramonti, F. Lucassen, V. A. V. Girardi, A. De Min, and C. B. Gomes, “Lavas and their mantle xenoliths from intracratonic eastern Paraguay (South America Platform) and andean domain, NW-Argentina: a comparative review,” Mineralogy and Petrology, vol. 98, no. 1-2, pp. 143–165, 2010.
[54]  G. DeMarchi, P. Comin-Chiaramonti, P. DeVito, S. Sinigoi, and A. M. C. Castillo, “Lherzolite-dunite xenoliths from Eastern Paraguay: petrological constraints to mantle metasomatism,” in The Mesozoic Flood Volcanism of the Paran' Basin: Petrogenetic and Geophysical Aspects, E. M. Piccirillo and A. J. Melfi, Eds., pp. 207–228, IAG, S?o Paulo, Brazil, 1988.
[55]  P. Comin-Chiaramonti, L. Civetta, E. M. Piccirillo et al., “Tertiary nephelinitic magmatism in eastern Paraguay: petrology, Sr- Nd isotopes and genetic relationships with associated spinel- peridotite xenoliths,” European Journal of Mineralogy, vol. 3, no. 3, pp. 507–525, 1991.
[56]  P. Comin-Chiaramonti, F. Princivalle, V. A. V. Girardi, C. B. Gomes, A. Laurora, and R. Zanetti, “Mantle xenoliths from ?emby, Eastern Paraguay: O-Sr-Nd isotopes, trace elements and crystal chemistry of hosted clinopyroxenes,” Periodico di Mineralogia, vol. 70, pp. 205–230, 2001.
[57]  J. Wang, K. H. Hattori, R. Kilian, and C. R. Stern, “Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fO2 by slab-melt,” Contributions to Mineralogy and Petrology, vol. 153, no. 5, pp. 607–624, 2007.
[58]  M. F. Roden, F. A. Frey, and D. M. Francis, “An example of consequent mantle metasomatism in peridotite inclusions from Nunivak Island, Alaska,” Journal of Petrology, vol. 25, no. 2, pp. 546–577, 1984.
[59]  S. Y. O'Reilly and W. L. Griffin, “Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites,” Geochimica et Cosmochimica Acta, vol. 52, no. 2, pp. 433–447, 1988.
[60]  F. J. Spera, “Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas,” Contributions to Mineralogy and Petrology, vol. 88, no. 3, pp. 217–232, 1984.
[61]  F. A. Frey and D. H. Green, “The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanite,” Geochimica et Cosmochimica Acta, vol. 38, pp. 1023–1050, 1979.
[62]  D. K. Koustpoulos, “Melting of the shallow upper mantle: a new perspective,” Journal of Perology, vol. 32, pp. 671–699, 1991.
[63]  G. Rivalenti, R. Vannucci, E. Rampone et al., “Peridotite clinopyroxene chemistry reflects mantle processes rather than continental versus oceanic settings,” Earth and Planetary Science Letters, vol. 139, no. 3-4, pp. 423–437, 1996.
[64]  P. R. A. Wells, “Pyroxene thermometry in simple and complex systems,” Contributions to Mineralogy and Petrology, vol. 42, pp. 109–121, 1977.
[65]  J. Fabriès, “Spinel-olivine geothermometry in peridotites from ultramafic complexes,” Contributions to Mineralogy and Petrology, vol. 69, pp. 329–336, 1979.
[66]  J. C. Mercier, “Single-pyroxene geothermometry and geobarometry,” The American Journal of Sciences, vol. 61, no. 7-8, pp. 603–615, 1980.
[67]  J. C. C. Mercier, V. Benoit, and J. Girardeau, “Equilibrium state of diopside-bearing harzburgites from ophiolites: geobarometric and geodynamic implications,” Contributions to Mineralogy and Petrology, vol. 85, no. 4, pp. 391–403, 1984.
[68]  G. Sen, F. A. Frey, N. Shimizu, and W. P. Leeman, “Evolution of the lithosphere beneath Oahu, Hawaii: rare earth element abundances in mantle xenoliths,” Earth and Planetary Science Letters, vol. 119, no. 1-2, pp. 53–69, 1993.
[69]  H. Chiba, T. Chack, R. N. Clayton, and J. Goldsmith, “Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry,” Geochimica et Cosmochimica Acta, vol. 53, pp. 2985–2989, 1989.
[70]  D. Mattey, D. Lowry, and C. Macpherson, “Oxygen isotope composition of mantle peridotite,” Earth and Planetary Science Letters, vol. 128, no. 3-4, pp. 231–241, 1994.
[71]  T. K. Kyser, “1990. Stable isotopes in the continental lithospheric mantle,” in Continental Mantle, M. A. Menzies, Ed., pp. 127–156, Oxford Clarendon Press, Oxford, UK, 1990.
[72]  T. K. Kyser, J. R. O'Neil, and I. S. E. Carmichael, “Oxygen isotope thermometry of basic lavas and mantle nodules,” Contributions to Mineralogy and Petrology, vol. 77, no. 1, pp. 11–23, 1981.
[73]  F. Princivalle, M. Tirone, and P. Comin-Chiaramonti, “Clinopyroxenes from metasomatized spinel-peridotite mantle xenoliths from Nemby (Paraguay): crystal chemistry and petrological implications,” Mineralogy and Petrology, vol. 70, no. 1-2, pp. 25–35, 2000.
[74]  F. Castorina, P. Censi, P. Comin-Chiaramonti et al., “Carbonatites from Eastern Paraguay and genetic relationships with potassic magmatism: C, O, Sr and Nd isotopes,” Mineralogy and Petrology, vol. 61, no. 1–4, pp. 237–260, 1998.
[75]  P. Antonini, M. Gasparon, P. Comin-Chiaramonti, and C. B. Gomes, “Post-palaeozoic magmatism in Eastern paraguay: Sr-Nd-Pb isotope compositions,” in Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 57–70, EdUSP, Fapesp, S?o Paulo, Brazil, 2005.
[76]  D. Mckenzie and R. K. O'nions, “The source regions of ocean island basalts,” Journal of Petrology, vol. 36, no. 1, pp. 133–159, 1995.
[77]  S. R. Hart and A. Zindler, “Constraints on the nature and the development of chemical heterogeneities in the mantle,” in Mantle Convection Plate Tectonics and Global Dynamics, W. R. Peltier, Ed., pp. 261–388, Gordon and Breach Sciences, New York, NY, USA, 1989.
[78]  P. Comin-Chiaramonti, C. B. Gomes, and Eds, Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform, EdUSP, Fapesp, S?o Paulo, Brazil, 2005.
[79]  R. W. Carlson, S. Esperan?a, and D. P. Svisero, “Chemical and Os isotopic study of Cretaceous potassic rocks from Southern Brazil,” Contributions to Mineralogy and Petrology, vol. 125, no. 4, pp. 393–405, 1996.
[80]  M. A. Menzies, Ed., Continental Mantle, Oxford Clarendon Press, 1990.
[81]  B. L. Weaver, “The origin of ocean island basalt end-member compositions: trace element and isotopic constraints,” Earth and Planetary Science Letters, vol. 104, no. 2–4, pp. 381–397, 1991.
[82]  S. Foley, “Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints,” LITHOS, vol. 28, no. 3–6, pp. 187–204, 1992.
[83]  S. Foley, “Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas,” LITHOS, vol. 28, no. 3–6, pp. 435–453, 1992.
[84]  C. J. Hawkesworth, M. S. M. Mantovani, P. N. Taylor, and Z. Palacz, “Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts,” Nature, vol. 322, no. 6077, pp. 356–359, 1986.
[85]  J. K. Meen, J. C. Ayers, and E. J. Fregeau, “A model of mantle metasomatism by carbonated alkaline melts: trace element and isotopic compositions of mantle source regions of carbonatite and other continental igneous roks,” in Carbonatites, Genesis and Evolution, K. Bell, Ed., pp. 464–499, Unwin Hyman, London, UK, 1989.
[86]  S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, A. D. Saunders and M. J. Norry, Eds., Special Paper 42, pp. 313–345, Geological Society of London, 1989.
[87]  P. Comin-Chiaramonti, F. Castorina, A. Cundari, R. Petrini, and C. B. Gomes, “Dykes and sills from Eastern paraguay: Sr and Nd isotope systematic,” in IDC-3, Physics and Chemistry of Dykes, G. Baer and A. Heiman, Eds., pp. 267–278, Balkema, Rotterdam, The Netherlands, 1995.
[88]  P. Comin-Chiaramonti, C. B. Gomes, A. Cundari, F. Castorina, and P. Censi, “A review of carbonatitic magmatism in the Paraná-Angola-Etendeka (Pan) system,” Periodico di Mineralogia, vol. 76, pp. 25–78, 2007.
[89]  P. Comin-Chiaramonti, C. B. Gomes, P. Censi, et al., “Alkaline complexes from the alto paraguay province at the border of Brazil (Mato Grosso do Sul State) and Paraguay,” in Mesozoic To Cenozoic Alkaline Magmatism in the Brazilian Platform, P. Comin-Chiaramonti and C. B. Gomes, Eds., pp. 71–148, Edusp-Fapesp, S?oPaulo, Brazil, 2005.
[90]  C. J. Hawkesworth, K. Gallagher, S. Kelley et al., “Paraná magmatism and the opening of the South Atlantic,” in Magmatism and the Causes of Continental Break-Up, B. C. Storey, Ed., vol. 68, pp. 221–240, Geological Society of London, 1992.
[91]  S. Turner, M. Regelous, S. Kelley, C. Hawkesworth, and M. Mantovani, “Magmatism and continental break-up in the South Atlantic: high precision 40Ar39Ar geochronology,” Earth and Planetary Science Letters, vol. 121, no. 3-4, pp. 333–348, 1994.
[92]  D. W. Peate, “The parana-etendeka province,” in Large Igneuos Province: Continetal Oceanic, Planetary Flood Volcanism, J. Mahoney and M. F. Coffin, Eds., pp. 217–245, American Geophyscial Union, Washington, DC, USA, 1992.
[93]  D. W. Peate and C. J. Hawkesworth, “Lithospheric to asthenospheric transition in low-Ti flood basalts from southern Paraná, Brazil,” Chemical Geology, vol. 127, no. 1–3, pp. 1–24, 1996.
[94]  A. J. Erlank, F. G. Waters, C. J. Hawkesworth et al., “Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa,” in Mantle Metasomatism, M. A. Menzies and C. J. Hawkesworth, Eds., pp. 221–309, Academic Press, London, UK, 1987.
[95]  D. E. Randall, “A new Jurassic-Recent apparent polar wander path for South America and a review of central Andean tectonic models,” Tectonophysics, vol. 299, no. 1–3, pp. 49–74, 1998.
[96]  O. Gudmundsson and M. Sambridge, “A Regionalized Upper Mantle (RUM) seismic model,” Journal of Geophysical Research B, vol. 103, no. 4, pp. 7121–7136, 1998.
[97]  F. Lucassen, R. Becchio, H. G. Wilke et al., “Proterozoic-Paleozoic development of the basement of the Central Andes (18-26°S) - A mobile belt of the South American craton,” Journal of South American Earth Sciences, vol. 13, no. 8, pp. 697–715, 2000.
[98]  J. H. Laux, M. M. Pimentel, E. L. Dantas, R. Armstrong, and S. L. Junges, “Two neoproterozoic crustal accretion events in the Brasília belt, central Brazil,” Journal of South American Earth Sciences, vol. 18, no. 2, pp. 183–198, 2005.
[99]  H. K. Liu, S. S. Gao, P. G. Silver, and Y. Zhang, “Mantle layering across central South America,” Journal of Geophysical Research, vol. 108, no. 1, p. 2510, 2003.
[100]  J. C. Van Decar, D. E. James, and M. Assump??o, “Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces,” Nature, vol. 378, no. 6552, pp. 25–31, 1995.
[101]  M. S. M. Mantovani, M. C. L. Quintas, W. Shukowsky, and B. B. de Brito Neves, “Delimitation of the Paranapanema proterozoic block: a geophysical contribution,” Episodes, vol. 28, no. 1, pp. 18–22, 2005.
[102]  R. Unrug, “The Assembly of Gondwanaland,” Episodes, vol. 19, pp. 11–20, 1996.
[103]  U. G. :Cordani, K. Sato, W. Teixeira, C. C. G. Tassinari, and M. A. S. Basei, “Crustal evolution of the South American platform,” in Tectonic Evolution of South America, 31st International Geological Congress, Rio De Janeiro, U. G. :Cordani, E. J. Milani, A. A. Thomaz Filho, and D. A. Campos, Eds., pp. 19–40, 2000.
[104]  U. G. :Cordani, C. C. G. Tassinari, and D. R. Rolim, “The basement of the Rio Apa Craton in Mato Grosso do Sul (Brazil) and northern Paraguay: a geochronological correlation with the tectonic provinces of the south-western Amazonian Craton,” in Gondwana Conference, Abstracts Volume, Mendoza, Argentina, pp. 1–12, 2005.
[105]  A. Kr?ner and U. Cordani, “African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology,” Tectonophysics, vol. 375, no. 1–4, pp. 325–352, 2003.
[106]  C. B. Prezzi and R. N. Alonso, “New paleomagnetic data from the northern Argentine Puna: central Andes rotation pattern reanalyzed,” Journal of Geophysical Research B, vol. 107, no. 2, pp. 1–18, 2002.
[107]  A. E. Rapalini, “The accretionary history of southern South America from the latest Proterozoic to the Late Palaeozoic: some palaeomagnetic constraints,” Geological Society, vol. 246, pp. 305–328, 2005.
[108]  D. Nürberg and R. D. Müller, “The tectonic evolution of South Atlantic from Late Jurassic to present,” Tectonophysics, vol. 191, pp. 27–43, 1991.
[109]  H. K. Chang, R. O. Kowsmann, and A. M. F. de Figueiredo, “New concepts on the development of east Brazilian marginal basins,” Episodes, vol. 11, no. 3, pp. 194–202, 1988.
[110]  W. S. Holbrook and P. B. Kelemen, “Large igneous province on the US atlantic margin and implications for magmatism during continental breakup,” Nature, vol. 364, no. 6436, pp. 433–436, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413