全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Anti-Inflammatory, Phytoestrogenic, and Antioxidative Role of Labisia pumila in Prevention of Postmenopausal Osteoporosis

DOI: 10.1155/2012/706905

Full-Text   Cite this paper   Add to My Lib

Abstract:

Osteoporosis is characterized by skeletal degeneration with low bone mass and destruction of microarchitecture of bone tissue which is attributed to various factors including inflammation. Women are more likely to develop osteoporosis than men due to reduction in estrogen during menopause which leads to decline in bone-formation and increase in bone-resorption activity. Estrogen is able to suppress production of proinflammatory cytokines such as IL-1, IL-6, IL-7, and TNF- . This is why these cytokines are elevated in postmenopausal women. Studies have shown that estrogen reduction is able to stimulate focal inflammation in bone. Labisia pumila (LP) which is known to exert phytoestrogenic effect can be used as an alternative to ERT which can produce positive effects on bone without causing side effects. LP contains antioxidant as well as exerting anti-inflammatory effect which can act as free radical scavenger, thus inhibiting TNF-α production and COX-2 expression which leads to decline in RANKL expression, resulting in reduction in osteoclast activity which consequently reduces bone loss. Hence, it is the phytoestrogenic, anti-inflammatory, and antioxidative properties that make LP an effective agent against osteoporosis. 1. Introduction Plant has been one of the sources of medicine to treat various illnesses and diseases since ancient time. In the early 19th century, when chemical analysis first became available, scientists began to extract and modify the active ingredients from plants which later led to wide development of natural or traditional medicine that was mostly passed on orally from one generation to another. More than 35,000 plant species have been reported to be used in various human cultures around the world for their medical purposes [1]. Traditional medicine has been defined by the World Health Organization (WHO) as “health practices, approaches, knowledge and beliefs incorporating plant, animal and mineral-based medicines, spiritual therapies, manual techniques and exercises, applied singularly or in combination, to treat, diagnose and prevent illnesses or maintain well-being” [2]. Currently in Malaysia, over 2,000 species of lower plants with medicinal and therapeutic properties have been identified, and most of them have been used for many generations in various health care systems. About 17.1% of Malaysians used herbs to treat their health problems while 29.6% of them consumed herbs for their health maintenance [3]. The earliest report on medicinal plant research in Malaysia was carried out by Arthur in 1954 [4]. Subsequently, more

References

[1]  A. Lewington, Medicinal Plants and Plant Extracts: A Review of Their Importation into Europe, Traffic International, Cambridge, UK, 1993.
[2]  WHO, Traditional Medicine, WHO, Geneva, Switzerland, 2003.
[3]  S. Elliot, Pharmacy Needs Tropical Forests, Manufacturing Chemist, 1986.
[4]  H. R. Arthur, “A phytochemical survey of some plants of north Borneo,” Journal of Pharmacy and Pharmacology, vol. 6, no. 1, pp. 66–72, 1954.
[5]  L. E. Teo, G. Pachiaper, K. C. Chan et al., “A new phytochemical survey of Malaysia V. Preliminary screening and plant chemical studies,” Journal of Ethnopharmacology, vol. 28, no. 1, pp. 63–101, 1990.
[6]  A. L. Mohamed, A. Zainudin, G. H. Petol, et al., “Phytochemical and toxicity screening of plants from Fraser Hill, Pahang,” in Chemical Prospecting in the Malaysian Forest, G. Ismail, M. Mohamaed, and L. B. Din, Eds., pp. 1–8, Pelanduk, Petaling Jaya, Malaysia, 1995.
[7]  G. Kaur, H. Hamid, A. Ali, M. S. Alam, and M. Athar, “Antiinflammatory evaluation of alcoholic extract of galls of Quercus infectoria,” Journal of Ethnopharmacology, vol. 90, no. 2-3, pp. 285–292, 2004.
[8]  Z. A. Zakaria, H. Patahuddin, A. S. Mohamad, D. A. Israf, and M. R. Sulaiman, “In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum,” Journal of Ethnopharmacology, vol. 128, no. 1, pp. 42–48, 2010.
[9]  C. L. Hsu, B. O. H. Hong, Y. U. Shan, and G. C. Yen, “Antioxidant and Anti-Inflammatory effects of orthosiphon aristatus and its bioactive compounds,” Journal of Agricultural and Food Chemistry, vol. 58, no. 4, pp. 2150–2156, 2010.
[10]  B. C. Stone, “Notes on the genus Labisia Lindl (Myrsinaceae),” Malayan Nature Journal, vol. 42, pp. 43–51, 1988.
[11]  A. J. Jamia, P. J. Houghton, S. R. Milligan, and J. Ibrahim, “The Oestrogenic and Cytotoxic Effects of the Extracts of Labisia pumila var. alata and Labisia pumila var. pumila In Vitro,” Malaysian Journal of Health Sciences, vol. 1, pp. 53–60, 1988.
[12]  I. H. Burkill, Dictionary of the Economic Products of the Malay Peninsula, Publisher Crown Agents for the Colonies, London, UK, 1935.
[13]  M. A. Rasadah and A. S. Zainon, Database on ASEAN Herbal and Medicinal Plants, vol. 1, ASEAN Publication, 2003.
[14]  M. Zakaria and M. A. Mohd, Traditional Malay Medicinal Plants, vol. 8, Penerbit Fajar Bakti, Kuala Lumpur, Malaysia, 1994.
[15]  G. Bodeker, Health and Beauty from the Rainforest: Malaysian Traditions of Ramuan, Editions Didier Millet Pty, Kuala Lumpur, Malaysia, 1999.
[16]  A. Fasihuddin, A. H. Rahman, and R. Hasmah, “Medicinal plants used by bajau community in sabah,” in Trends in Traditional Medicine Research, K. L. Chan, et al., Ed., pp. 493–504, The School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia, 1995.
[17]  J. A. Jamal, P. J. Houghton, and S. R. Milligan, “Testing of labisia pumila for oestrogenic activity using a recombinant yeast sceen,” Journal of Pharmacy and Pharmacology, vol. 50, p. 79, 1998.
[18]  Institute for Medical Research, Estrogenic and Androgenic Activities of Kacip Fatimah (Labisia Pumila), Abstracts of Research Projects, Ministry of Health Malaysia, Kuala Lumpur, Malaysia, 2002.
[19]  L. Manneras, M. Fazliana, W. M. Wan Nazaimoon, et al., “Beneficial metabolic effects of the Malaysian herb Labisia pumila var. alata in a rat model of polycystic ovary syndrome,” Journal of Ethnopharmacology, vol. 127, pp. 346–351, 2010.
[20]  M. Fazliana, W. M. Wan Nazaimoon, H. F. Gu, and C. G. ?stenson, “Labisia pumila extract regulates body weight and adipokines in ovariectomized rats,” Maturitas, vol. 62, no. 1, pp. 91–97, 2009.
[21]  IFST, Current Hot Topics. Phytoestrogens, Institute of Food Science and Technology, London, UK, 2001.
[22]  H. Husniza, Estrogenic and Androgenic Activities of Kacip Fatimah (Labisia pumila), Abstracts of Research Projects, Institute of Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia, 2002.
[23]  B. Avula, Y. H. Wang, Z. Ali, T. J. Smillie, and I. A. Khan, “Quantitative determination of triperpene saponins and alkenated-phenolics from Labisia pumila by LCUV/ELSD method and confirmation by LC-ESI-TOF,” Planta Medica, vol. 76, p. 25, 2010.
[24]  V. Beral, E. Banks, and G. Reeves, “Evidence from randomised trials on the long-term effects of hormone replacement therapy,” Lancet, vol. 360, no. 9337, pp. 942–944, 2002.
[25]  R. T. Chlebowski, J. A. Kim, and N. F. Col, “Estrogen deficiency symptom management in breast cancer survivors in the changing context of menopausal hormone therapy,” Seminars in Oncology, vol. 30, no. 6, pp. 776–88, 2003.
[26]  B. Komm and P. V. N. Bodine, “Regulation of bone cell function by estrogens,” in Osteoporosis, R. Marcus, D. Feldman, and J. Kelsey, Eds., pp. 305–337, Academic Press, San Diego, Calif, USA, 2001.
[27]  S. C. Manolagas, S. Kousteni, and R. L. Jilka, “Sex steroids and bone,” Recent Progress in Hormone Research, vol. 57, pp. 385–409, 2002.
[28]  S. C. Manolagas, “Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis,” Endocrine Reviews, vol. 21, no. 2, pp. 115–137, 2000.
[29]  N. E. Lane, The Osteoporosis Book: A Guide for Patients and Their Families, Oxford University Press, New York, NY, USA, 2001.
[30]  E. Amir, O. C. Freedman, B. Seruga, and D. G. Evans, “Assessing women at high risk of breast cancer: a review of risk assessment models,” Journal of the National Cancer Institute, vol. 102, no. 10, pp. 680–691, 2010.
[31]  NIH, Osteoporosis and Related Bone Disease, National Resource Centre, 2011.
[32]  J. P. Bilezikian, “Osteoporosis in men,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3431–3434, 1999.
[33]  J. R. Arron and Y. Choi, “Bone versus immune system,” Nature, vol. 408, no. 6812, pp. 535–536, 2000.
[34]  J. Lorenzo, “Interactions between immune and bone cells: new insights with many remaining questions,” Journal of Clinical Investigation, vol. 106, no. 6, pp. 749–752, 2000.
[35]  S. C. Manolagas and R. L. Jilka, “Mechanisms of disease: bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis,” The New England Journal of Medicine, vol. 332, no. 5, pp. 305–311, 1995.
[36]  S. C. Manolagas, “Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis,” Endocrine Reviews, vol. 21, no. 2, pp. 115–137, 2000.
[37]  S. Wei, H. Kitaura, P. Zhou, F. Patrick Ross, and S. L. Teitelbaum, “IL-1 mediates TNF-induced osteoclastogenesis,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 282–290, 2005.
[38]  R. Pacifici, L. Rifas, R. McCracken et al., “Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 7, pp. 2398–2402, 1989.
[39]  D. Mitra, D. M. Elvins, D. J. Speden, and A. J. Collins, “The prevalence of vertebral fractures in mild ankylosing spondylitis and their relationship to bone mineral density,” Rheumatology, vol. 39, no. 1, pp. 85–89, 2000.
[40]  T. Jensen, M. Klarlund, M. Hansen, K. E. Jensen, H. Skjodt, and L. Hydlldstrup, “Connective tissue metabolism in patients with unclassified polyarthritis and early rheumatoid arthritis. Relationship to disease activity, bone mineral density, and radiographyc outcome,” Journal of Rheumatology, vol. 31, pp. 1698–1708, 2004.
[41]  K. Ishihara and T. Hirano, “IL-6 in autoimmune disease and chronic inflammatory proliferative disease,” Cytokine and Growth Factor Reviews, vol. 13, no. 4-5, pp. 357–368, 2002.
[42]  G. Girasole, G. Passeri, R. L. Jilka, and S. C. Manolagas, “Interleukin-11: a new cytokine critical for osteoclast development,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1516–1524, 1994.
[43]  R. L. Jilka, R. S. Weinstein, T. Bellido, A. M. Parfitt, and S. C. Manolagas, “Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 793–802, 1998.
[44]  K. Fuller, B. Wong, S. Fox, Y. Choi, and T. J. Chambers, “TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts,” Journal of Experimental Medicine, vol. 188, no. 5, pp. 997–1001, 1998.
[45]  R. L. Jilka, “Cytokines, bone remodeling, and estrogen deficiency,” Bone, vol. 23, no. 2, pp. 75–81, 1998.
[46]  D. A. Papanicolaou, R. L. Wilder, S. C. Manolagas, and G. P. Chrousos, “The pathophysiologic roles of interleukin-6 in human disease,” Annals of Internal Medicine, vol. 128, no. 2, pp. 127–137, 1998.
[47]  R. B. Kimble, A. B. Matayoshi, J. L. Vannice, V. T. Kung, C. Williams, and R. Pacifici, “Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period,” Endocrinology, vol. 136, no. 7, pp. 3054–3061, 1995.
[48]  L. C. Hofbauer, S. Khosla, C. R. Dunstan, D. L. Lacey, T. C. Spelsberg, and B. L. Riggs, “Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells,” Endocrinology, vol. 140, no. 9, pp. 4367–4370, 1999.
[49]  S. Cenci, M. N. Weitzmann, C. Roggia et al., “Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α,” Journal of Clinical Investigation, vol. 106, no. 10, pp. 1229–1237, 2000.
[50]  P. Collin-Osdoby, L. Rothe, F. Anderson, M. Nelson, W. Maloney, and P. Osdoby, “Receptor activator of NF-κB and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis,” Journal of Biological Chemistry, vol. 276, no. 23, pp. 20659–20672, 2001.
[51]  M. F. Wan Ezumi, S. Siti Amrah, A. W. M. Suhaimi, and S. S. J. Mohsin, “Evaluation of the female reproductive toxicity of aqueous extract of Labisia pumila var. alata in rats,” Indian Journal of Pharmacology, vol. 39, no. 1, pp. 30–32, 2007.
[52]  G. D. Singh, M. Ganjoo, M. S. Youssouf et al., “Sub-acute toxicity evaluation of an aqueous extract of Labisia pumila, a Malaysian herb,” Food and Chemical Toxicology, vol. 47, no. 10, pp. 2661–2665, 2009.
[53]  S. C. Taneja, Sub-Chronic (90 days) Oral Toxicity Studies of Aqueous Extract of Labisia pumila in Wistar Rats (250, 500&1000?mg/kg b. wt. only), Indian Institute of Integrative Medicine, Jammu, India, 2004.
[54]  B. L. Riggs, S. Khosla, and L. J. Melton, “Sex steroids and the construction and conservation of the adult skeleton,” Endocrine Reviews, vol. 23, no. 3, pp. 279–302, 2002.
[55]  F. Syed and S. Khosla, “Mechanisms of sex steroid effects on bone,” Biochemical and Biophysical Research Communications, vol. 328, no. 3, pp. 688–696, 2005.
[56]  R. T. Turner, B. L. Riggs, and T. C. Spelsberg, “Skeletal effects of estrogen,” Endocrine Reviews, vol. 15, no. 3, pp. 275–300, 1994.
[57]  H. K. Choi, D. H. Kim, J. W. Kim, S. Ngadiran, M. R. Sarmidi, and C. S. Park, “Labisia pumila extract protects skin cells from photoaging caused by UVB irradiation,” Journal of Bioscience and Bioengineering, vol. 109, no. 3, pp. 291–296, 2010.
[58]  L. J. Crofford, “COX-1 and COX-2 tissue expression: Implications and predictions,” Journal of Rheumatology, vol. 24, no. 49, pp. 15–19, 1997.
[59]  H. Yasuda, N. Shima, N. Nakagawa et al., “Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3597–3602, 1998.
[60]  J. H. M. Feyen and L. G. Raisz, “Prostaglandin production by calvariae from sham operated and oophorectomized rats: effect of 17β-estradiol in vivo,” Endocrinology, vol. 121, no. 2, pp. 819–821, 1987.
[61]  M. R. Forwood, “Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo,” Journal of Bone and Mineral Research, vol. 11, no. 11, pp. 1688–1693, 1996.
[62]  K. Fuller, C. Murphy, B. Kirstein, S. W. Fox, and T. J. Chambers, “TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL,” Endocrinology, vol. 143, no. 3, pp. 1108–1118, 2002.
[63]  S. E. Lee, W. J. Chung, H. B. Kwak et al., “Tumor necrosis factor-α supports the survival of osteoclasts through the activation of Akt and ERK,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 49343–49349, 2001.
[64]  L. Gilbert, X. He, P. Farmer et al., “Inhibition of osteoblast differentiation by tumor necrosis factor-α,” Endocrinology, vol. 141, no. 11, pp. 3956–3964, 2000.
[65]  S. Kumar, B. J. Votta, D. J. Rieman, A. M. Badger, M. Gowen, and J. C. Lee, “IL-1- and TNF-induced bone resorption is mediated by p38 mitogen activated protein kinase,” Journal of Cellular Physiology, vol. 187, no. 3, pp. 294–303, 2001.
[66]  L. C. Hofbauer, C. R. Dunstan, T. C. Spelsberg, B. L. Riggs, and S. Khosla, “Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines,” Biochemical and Biophysical Research Communications, vol. 250, no. 3, pp. 776–781, 1998.
[67]  J. Huang, H. Zhang, N. Shimizu, and T. Takeda, “Triterpenoid saponins from Ardisia mamillata,” Phytochemistry, vol. 54, no. 8, pp. 817–822, 2000.
[68]  M. Norhaiza, M. Maziah, and M. Hakiman, “Antioxidative properties of leaf extracts of a popular Malaysian herb, Labisia pumila,” Journal of Medicinal Plant Research, vol. 3, no. 4, pp. 217–223, 2009.
[69]  G. G. Duthie, P. T. Gardner, and J. A. M. Kyle, “Plant polyphenols: are they the new magic bullet?” Proceedings of the Nutrition Society, vol. 62, no. 3, pp. 599–603, 2003.
[70]  H. Sies and W. Stahl, “Vitamins E and C, β-carotene, and other carotenoids as antioxidants,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1315S–121S, 1995.
[71]  L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, no. 11, pp. 317–333, 1998.
[72]  S. Y. Wang and H. Jiao, “Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radical's, and singlet oxygen,” Journal of Agricultural and Food Chemistry, vol. 48, no. 11, pp. 5677–5684, 2000.
[73]  A. Cassidy, B. Hanley, and R. M. Lamuela-Raventos, “Isoflavones, lignans and stilbenes: origins, etabolism and potential importance tohuman health,” Journal of the Science of Food and Agriculture, vol. 80, no. 7, pp. 1044–1062, 2000.
[74]  P. P. Lelovas, T. T. Xanthos, S. E. Thorma, G. P. Lyritis, and I. A. Dontas, “The laboratory rat as an animal model for osteoporosis research,” Comparative Medicine, vol. 58, no. 5, pp. 424–430, 2008.
[75]  M. Badeau, H. Adlercreutz, P. Kaihovaara, and M. J. Tikkanen, “Estrogen A-ring structure and antioxidative effect on lipoproteins,” Journal of Steroid Biochemistry and Molecular Biology, vol. 96, no. 3-4, pp. 271–278, 2005.
[76]  J. M. Lean, C. J. Jagger, B. Kirstein, K. Fuller, and T. J. Chambers, “Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation,” Endocrinology, vol. 146, no. 2, pp. 728–735, 2005.
[77]  B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 2007.
[78]  K. Naka, T. Muraguchi, T. Hoshii, and A. Hirao, “Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells,” Antioxidants and Redox Signaling, vol. 10, no. 11, pp. 1883–1894, 2008.
[79]  D. Maggio, M. Barabani, M. Pierandrei et al., “Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1523–1527, 2003.
[80]  M. Almeida, L. Han, M. Martin-Millan et al., “Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids,” Journal of Biological Chemistry, vol. 282, no. 37, pp. 27285–27297, 2007.
[81]  F. Wauquier, L. Leotoing, V. Coxam, J. Guicheux, and Y. Wittrant, “Oxidative stress in bone remodelling and disease,” Trends in Molecular Medicine, vol. 15, no. 10, pp. 468–477, 2009.
[82]  Y. Hayase, Y. Muguruma, and M. Y. Lee, “Osteoclast development from hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to macrophage commitment,” Experimental Hematology, vol. 25, no. 1, pp. 19–25, 1997.
[83]  N. K. Lee, Y. G. Choi, J. Y. Baik et al., “A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation,” Blood, vol. 106, no. 3, pp. 852–859, 2005.
[84]  A. N. Sontakke and R. S. Tare, “A duality in the roles of reactive oxygen species with respect to bone metabolism,” Clinica Chimica Acta, vol. 318, no. 1-2, pp. 145–148, 2002.
[85]  M. Norazlina, P. L. Lee, H. I. Lukman, A. S. Nazrun, and S. Ima-Nirwana, “Effects of vitamin E supplementation on bone metabolism in nicotine-treated rats,” Singapore Medical Journal, vol. 48, no. 3, pp. 195–199, 2007.
[86]  J. Gonzalez-Gallego, S. Sanchez-Campoz, and M. J. Tunon, “Anti-inflammatory properties of dietary flavonoids,” Nutricion Hospitalaria, vol. 22, no. 3, pp. 287–293, 2007.
[87]  Y. L. Lin and J. K. Lin, “Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB,” Molecular Pharmacology, vol. 52, no. 3, pp. 465–472, 1997.
[88]  N. Mody, F. Parhami, T. A. Sarafian, and L. L. Demer, “Oxidative stress modulates osteoblastic differentiation of vascular and bone cells,” Free Radical Biology and Medicine, vol. 31, no. 4, pp. 509–519, 2001.
[89]  J. H. E. Fraser, M. H. Helfrich, H. M. Wallace, and S. H. Ralston, “Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae,” Bone, vol. 19, no. 3, pp. 223–226, 1996.
[90]  R. Kitazawa, R. B. Kimble, J. L. Vannice, V. T. Kung, and R. Pacifici, “Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice,” Journal of Clinical Investigation, vol. 94, no. 6, pp. 2397–2406, 1994.
[91]  A. S. Nazrun, P. L. Lee, M. Norliza, M. Norazlina, and N. S. Ima, “The effects of Labisia pumila var. alata on bone markers and bone calcium in a rat model of post-menopausal osteoporosis,” Journal of Ethnopharmacology, vol. 133, pp. 538–542, 2011.
[92]  H. N. Rosen, A. C. Moses, J. Garber et al., “Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy,” Calcified Tissue International, vol. 66, no. 2, pp. 100–103, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133