全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modification of Intestinal Microbiota and Its Consequences for Innate Immune Response in the Pathogenesis of Campylobacteriosis

DOI: 10.1155/2013/526860

Full-Text   Cite this paper   Add to My Lib

Abstract:

Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host’s immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF-κB triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response. 1. Introduction Campylobacter jejuni is a Gram-negative, spiral-shaped, nonspore forming, and highly motile bacterium that grows optimally under microaerophilic conditions at 42°C. The genome of C. jejuni is roughly 1.6 to 1.7?Mbp with a G+C ratio of approximately 31% [1]. C. jejuni has a wide spectrum of hosts ranging from wild birds, chicken, and turkey to mammals such as cattle, swine, sheep, and humans and can also be found in milk, meat, and stock water. C. jejuni is a highly prevalent commensal bacterium in all its hosts except for humans causing a bacterial food-borne illness known as campylobacteriosis. Campylobacteriosis has been found to be a usually self-limiting disease that is characterized by symptoms such as fever, abdominal cramps, bloody diarrhea, dizziness, and myalgia. However, in rare cases campylobacteriosis may lead to postinfectious complications like the Guillain-Barré syndrome (including the most severe form: the Miller-Fisher syndrome), reactive arthritis (Reiter’s syndrome), postinfectious irritable bowel syndrome, and potentially immunoproliferative small intestinal disease [2, 3]. Epidemiological studies have shown that the

References

[1]  J. Parkhill, B. W. Wren, K. Mungall et al., “The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences,” Nature, vol. 403, no. 6770, pp. 665–668, 2000.
[2]  J. I. Dasti, A. M. Tareen, R. Lugert, A. E. Zautner, and U. Gro?, “Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms,” International Journal of Medical Microbiology, vol. 300, no. 4, pp. 205–211, 2010.
[3]  A. E. Zautner, S. Herrmann, and U. Gro?, “Campylobacter jejuni—the search for virulence-associated factors,” Archiv für Lebensmittelhygiene, vol. 61, no. 3, pp. 91–101, 2010.
[4]  C. ML, “Causes and management of diarrhea in children in a clinical setting,” South African Journal of Clinical Nutrition, vol. 10, p. 5, 2010.
[5]  T. Alter, S. Bereswill, G. Glünder et al., “Campylobacteriosis of man: livestock as reservoir for Campylobacter species,” Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, vol. 54, no. 6, pp. 728–734, 2011.
[6]  P. Malik-Kale, C. T. Parker, and M. E. Konkel, “Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression,” Journal of Bacteriology, vol. 190, no. 7, pp. 2286–2297, 2008.
[7]  M. E. Konkel, M. R. Monteville, V. Rivera-Amill, and L. A. Joens, “The pathogenesis of Campylobacter jejuni-mediated enteritis,” Current Issues in Intestinal Microbiology, vol. 2, no. 2, pp. 55–71, 2001.
[8]  T. D. Lawley and A. W. Walker, “Intestinal colonization resistance,” Immunology, vol. 138, pp. 1–11, 2013.
[9]  P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Microbiology: diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005.
[10]  J. Penders, C. Thijs, C. Vink et al., “Factors influencing the composition of the intestinal microbiota in early infancy,” Pediatrics, vol. 118, no. 2, pp. 511–521, 2006.
[11]  R. Bennet and C. E. Nord, “Development of the faecal anaerobic microflora after caesarean section and treatment with antibiotics in newborn infants,” Infection, vol. 15, no. 5, pp. 332–336, 1987.
[12]  C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight, “Diversity, stability and resilience of the human gut microbiota,” Nature, vol. 489, pp. 220–230, 2012.
[13]  H. J. Flint, K. P. Scott, P. Louis, and S. H. Duncan, “The role of the gut microbiota in nutrition and health,” Nature Reviews Gastroenterology & Hepatology, vol. 9, pp. 577–589, 2012.
[14]  M. Blaut and T. Clavel, “Metabolic diversity of the intestinal microbiota: implications for health and disease,” The Journal of Nutrition, vol. 137, no. 3, pp. 751S–755S, 2007.
[15]  M. M. Kosiewicz, A. L. Zirnheld, and P. Alard, “Gut microbiota, immunity, and disease: a complex relationship,” Frontiers in Microbiology, vol. 2, p. 180, 2011.
[16]  M. J. Molloy, N. Bouladoux, and Y. Belkaid, “Intestinal microbiota: shaping local and systemic immune responses,” Seminars in Immunology, vol. 24, no. 1, pp. 58–66, 2012.
[17]  M. Bohnhoff, B. L. Drake, and C. P. Miller, “The effect of an antibiotic on the susceptibility of the mouse's intestinal tract to Salmonella infection,” Antibiotics Annual, vol. 3, pp. 453–455, 1955.
[18]  L. Lu and W. A. Walker, “Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium,” The American Journal of Clinical Nutrition, vol. 73, no. 6, pp. 1124S–1130S, 2001.
[19]  I. Gantois, R. Ducatelle, F. Pasmans et al., “Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression,” Applied and Environmental Microbiology, vol. 72, no. 1, pp. 946–949, 2006.
[20]  C. A. Cherrington, M. Hinton, G. R. Pearson, and I. Chopra, “Short-chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation,” The Journal of Applied Bacteriology, vol. 70, no. 2, pp. 161–165, 1991.
[21]  B. Marteyn, F. B. Scorza, P. J. Sansonetti, and C. Tang, “Breathing life into pathogens: the influence of oxygen on bacterial virulence and host responses in the gastrointestinal tract,” Cellular Microbiology, vol. 13, no. 2, pp. 171–176, 2011.
[22]  J. K. Nicholson, E. Holmes, J. Kinross, et al., “Host-gut microbiota metabolic interactions,” Science, vol. 336, pp. 1262–1267, 2012.
[23]  J. H. Cummings and G. T. Macfarlane, “The control and consequences of bacterial fermentation in the human colon,” The Journal of Applied Bacteriology, vol. 70, no. 6, pp. 443–459, 1991.
[24]  S. Macfarlane and G. T. Macfarlane, “Regulation of short-chain fatty acid production,” Proceedings of the Nutrition Society, vol. 62, no. 1, pp. 67–72, 2003.
[25]  J. A. Wright, A. J. Grant, D. Hurd et al., “Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch,” Microbiology, vol. 155, no. 1, pp. 80–94, 2009.
[26]  M. T. Thomas, M. Shepherd, R. K. Poole, A. H. M. van Vliet, D. J. Kelly, and B. M. Pearson, “Two respiratory enzyme systems in Campylobacter jejuni NCTC 11168 contribute to growth on l-lactate,” Environmental Microbiology, vol. 13, no. 1, pp. 48–61, 2011.
[27]  K. W. Heaton, “The importance of keeping bile salts in their place,” Gut, vol. 10, no. 10, pp. 857–863, 1969.
[28]  A. F. Hofmann, “The continuing importance of bile acids in liver and intestinal disease,” Archives of Internal Medicine, vol. 159, no. 22, pp. 2647–2658, 1999.
[29]  K. A. Ridley, J. D. Rock, Y. Li, and J. M. Ketley, “Heme utilization in Campylobacter jejuni,” Journal of Bacteriology, vol. 188, no. 22, pp. 7862–7875, 2006.
[30]  I. de Smet, L. van Hoorde, M. Vande Woestyne, H. Christiaens, and W. Verstraete, “Significance of bile salt hydrolytic activities of lactobacilli,” The Journal of Applied Bacteriology, vol. 79, no. 3, pp. 292–301, 1995.
[31]  J. van Eldere, P. Celis, G. de Pauw, E. Lesaffre, and H. Eyssen, “Tauroconjugation of cholic acid stimulates 7α-dehydroxylation by fecal bacteria,” Applied and Environmental Microbiology, vol. 62, no. 2, pp. 656–661, 1996.
[32]  A. M. Cook and K. Denger, “Dissimilation of the C2 sulfonates,” Archives of Microbiology, vol. 179, no. 1, pp. 1–6, 2003.
[33]  X. Liu, B. Gao, V. Novik, and J. E. Galan, “Quantitative proteomics of intracellular Campylobacter jejuni reveals metabolic reprogramming,” PLoS Pathogens, vol. 8, Article ID e1002562, 2012.
[34]  A. M. Tareen, J. I. Dasti, A. E. Zautner, U. Gro?, and R. Lugert, “Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells,” Microbiology, vol. 156, no. 10, pp. 3123–3135, 2010.
[35]  M. E. Konkel and W. Cieplak Jr., “Altered synthetic response of Campylobacter jejuni to cocultivation with human epithelial cells is associated with enhanced internalization,” Infection and Immunity, vol. 60, no. 11, pp. 4945–4949, 1992.
[36]  M. E. Konkel, B. J. Kim, J. D. Klena, C. R. Young, and R. Ziprin, “Characterization of the thermal stress response of Campylobacter jejuni,” Infection and Immunity, vol. 66, no. 8, pp. 3666–3672, 1998.
[37]  P. Panigrahi, G. Losonsky, L. J. deTolla, and J. G. Morris Jr., “Human immune response to Campylobacter jejuni proteins expressed in vivo,” Infection and Immunity, vol. 60, no. 11, pp. 4938–4944, 1992.
[38]  M. E. Konkel, B. J. Kim, V. Rivera-Amill, and S. G. Garvis, “Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells,” Molecular Microbiology, vol. 32, no. 4, pp. 691–701, 1999.
[39]  M. E. Konkel, J. D. Klena, V. Rivera-Amill et al., “Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus,” Journal of Bacteriology, vol. 186, no. 11, pp. 3296–3303, 2004.
[40]  E. Guccione, A. Hitchcock, S. J. Hall et al., “Reduction of fumarate, mesaconate and crotonate by Mfr, a novel oxygen-regulated periplasmic reductase in Campylobacter jejuni,” Environmental Microbiology, vol. 12, no. 3, pp. 576–591, 2010.
[41]  M. J. Sellars, S. J. Hall, and D. J. Kelly, “Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen,” Journal of Bacteriology, vol. 184, no. 15, pp. 4187–4196, 2002.
[42]  D. R. Weerakoon, N. J. Borden, C. M. Goodson, J. Grimes, and J. W. Olson, “The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology,” Microbial Pathogenesis, vol. 47, no. 1, pp. 8–15, 2009.
[43]  L. Wen, R. E. Ley, P. Y. Volchkov et al., “Innate immunity and intestinal microbiota in the development of type 1 diabetes,” Nature, vol. 455, no. 7216, pp. 1109–1113, 2008.
[44]  N. Larsen, F. K. Vogensen, F. W. J. van den Berg et al., “Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults,” PLoS ONE, vol. 5, no. 2, Article ID e9085, 2010.
[45]  P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon, “An obesity-associated gut microbiome with increased capacity for energy harvest,” Nature, vol. 444, no. 7122, pp. 1027–1031, 2006.
[46]  D. N. Frank, A. L. St. Amand, R. A. Feldman, E. C. Boedeker, N. Harpaz, and N. R. Pace, “Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13780–13785, 2007.
[47]  M. Rajili?-Stojanovi?, E. Biagi, H. G. H. J. Heilig et al., “Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome,” Gastroenterology, vol. 141, no. 5, pp. 1792–1801, 2011.
[48]  E. Nistal, A. Caminero, S. Vivas et al., “Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients,” Biochimie, vol. 94, pp. 1724–1729, 2012.
[49]  F. B?ckhed, H. Ding, T. Wang et al., “The gut microbiota as an environmental factor that regulates fat storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15718–15723, 2004.
[50]  S. H. Duncan, G. E. Lobley, G. Holtrop et al., “Human colonic microbiota associated with diet, obesity and weight loss,” International Journal of Obesity, vol. 32, no. 11, pp. 1720–1724, 2008.
[51]  H. Sokol, P. Lepage, P. Seksik, J. Doré, and P. Marteau, “Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis,” Journal of Clinical Microbiology, vol. 44, no. 9, pp. 3172–3177, 2006.
[52]  Y. Sanz, G. D. Pama, and M. Laparra, “Unraveling the ties between celiac disease and intestinal microbiota,” International Reviews of Immunology, vol. 30, no. 4, pp. 207–218, 2011.
[53]  E. Sánchez, G. de Palma, A. Capilla et al., “Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species,” Applied and Environmental Microbiology, vol. 77, no. 15, pp. 5316–5323, 2011.
[54]  G. de Palma, I. Nadal, M. Medina et al., “Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children,” BMC Microbiology, vol. 10, article 63, 2010.
[55]  C. de Filippo, D. Cavalieri, M. Di Paola et al., “Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14691–14696, 2010.
[56]  P. J. Turnbaugh, V. K. Ridaura, J. J. Faith, F. E. Rey, R. Knight, and J. I. Gordon, “The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice,” Science Translational Medicine, vol. 1, no. 6, p. 6ra14, 2009.
[57]  K. Brown, D. DeCoffe, E. Molcan, and D. L. Gibson, “Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease,” Nutrients, vol. 4, pp. 1095–1119, 2012.
[58]  S. Bereswill, R. Plickert, A. Fischer, et al., “What you eat is what you get: novel campylobacter models in the quadrangle relationship between nutrition, obesity, microbiota and susceptibility to infection,” European Journal of Microbiology and Immunology, vol. 1, pp. 237–248, 2011.
[59]  L.-M. Haag, A. Fischer, B. Otto et al., “Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice,” PLoS ONE, vol. 7, no. 5, Article ID e35988, 2012.
[60]  A. H. M. van Vliet, M.-L. A. Baillon, C. W. Penn, and J. M. Ketley, “The iron-induced ferredoxin FdxA of Campylobacter jejuni is involved in aerotolerance,” FEMS Microbiology Letters, vol. 196, no. 2, pp. 189–193, 2001.
[61]  P. J. M. Nuijten, F. J. A. M. van Asten, W. Gaastra, and B. A. M. van der Zeijst, “Structural and functional analysis of two Campylobacter jejuni flagellin genes,” The Journal of Biological Chemistry, vol. 265, no. 29, pp. 17798–17804, 1990.
[62]  R. Yao, D. H. Burr, and P. Guerry, “CheY-mediated modulation of Campylobacter jejuni virulence,” Molecular Microbiology, vol. 23, no. 5, pp. 1021–1031, 1997.
[63]  A. E. Zautner, A. M. Tareen, U. Gro?, and R. Lugert, “Chemotaxis in Campylobacter jejuni,” European Journal of Microbiology and Immunology, vol. 2, pp. 24–31, 2012.
[64]  Z. Pei, C. Burucoa, B. Grignon et al., “Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice,” Infection and Immunity, vol. 66, no. 3, pp. 938–943, 1998.
[65]  M. E. Konkel, S. G. Garvis, S. L. Tipton, D. E. Anderson Jr., and W. Cieplak Jr., “Identification and molecular cloning of a gene encoding a fibronectin- binding protein (CadF) from Campylobacter jejuni,” Molecular Microbiology, vol. 24, no. 5, pp. 953–963, 1997.
[66]  S. Jin, A. Joe, J. Lynett, E. K. Hani, P. Sherman, and V. L. Chan, “JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells,” Molecular Microbiology, vol. 39, no. 5, pp. 1225–1236, 2001.
[67]  A. Malik Tareen, J. I. Dasti, A. E. Zautner, U. Gro?, and R. Lugert, “Sulphite: cytochrome c oxidoreductase deficiency in Campylobacter jejuni reduces motility, host cell adherence and invasion,” Microbiology, vol. 157, no. 6, pp. 1776–1785, 2011.
[68]  D. R. Buelow, J. E. Christensen, J. M. Neal-Mckinney, and M. E. Konkel, “Campylobacter jejuni survival within human epithelial cells is enhanced by the secreted protein CiaI,” Molecular Microbiology, vol. 80, no. 5, pp. 1296–1312, 2011.
[69]  L. A. Edwards, K. Nistala, D. C. Mills et al., “Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection,” PLoS ONE, vol. 5, no. 11, Article ID e15398, 2010.
[70]  C. L. Pickett, E. C. Pesci, D. L. Cottle, G. Russell, A. N. Erdem, and H. Zeytin, “Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB genes,” Infection and Immunity, vol. 64, no. 6, pp. 2070–2078, 1996.
[71]  P. T. Richardson and S. F. Park, “Enterochelin acquisition in Campylobacter coli: characterization of components of a binding-protein-dependent transport system,” Microbiology, vol. 141, no. 12, pp. 3181–3191, 1995.
[72]  P. Guerry, J. Perez-Casal, R. Yao, A. Mcveigh, and T. J. Trust, “A genetic locus involved in iron utilization unique to some Campylobacter strains,” Journal of Bacteriology, vol. 179, no. 12, pp. 3997–4002, 1997.
[73]  M. A. Galindo, W. A. Day, B. H. Raphael, and L. A. Joens, “Cloning and characterization of a Campylobacter jejuni iron-uptake operon,” Current Microbiology, vol. 42, no. 2, pp. 139–143, 2001.
[74]  R. A. Larsen, M. G. Thomas, and K. Postle, “Protonmotive force, ExbB and ligand-bound FepA drive conformational changes in TonB,” Molecular Microbiology, vol. 31, no. 6, pp. 1809–1824, 1999.
[75]  S. N. Wai, K. Nakayama, K. Umene, T. Moriya, and K. Amako, “Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress,” Molecular Microbiology, vol. 20, no. 6, pp. 1127–1134, 1996.
[76]  A. E. Zautner, S. Herrmann, J. Corso, A. M. Tareen, T. Alter, and U. Gro?, “Epidemiological association of different Campylobacter jejuni groups with metabolism-associated genetic markers,” Applied and Environmental Microbiology, vol. 77, no. 7, pp. 2359–2365, 2011.
[77]  D. Hofreuter, V. Novik, and J. E. Galán, “Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization,” Cell Host and Microbe, vol. 4, no. 5, pp. 425–433, 2008.
[78]  A. E. Zautner, C. Ohk, A. M. Tareen, R. Lugert, and U. Gro?, “Epidemiological association of Campylobacter jejuni groups with pathogenicity-associated genetic markers,” BMC Microbiology, vol. 12, p. 171, 2012.
[79]  E. C. Pesci, D. L. Cottle, and C. L. Pickett, “Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni,” Infection and Immunity, vol. 62, no. 7, pp. 2687–2694, 1994.
[80]  K. A. Grant and S. F. Park, “Molecular characterization of katA from Campylobacter jejuni and generation of a catalase-deficient mutant of Campylobacter coli by interspecific allelic exchange,” Microbiology, vol. 141, no. 6, pp. 1369–1376, 1995.
[81]  M.-L. A. Baillon, A. H. M. van Vliet, J. M. Ketley, C. Constantinidou, and C. W. Penn, “An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni,” Journal of Bacteriology, vol. 181, no. 16, pp. 4798–4804, 1999.
[82]  F. L. Thies, H. Karch, H.-P. Hartung, and G. Giegerich, “The ClpB protein from Campylobacter jejuni: molecular characterization of the encoding gene and antigenicity of the recombinant protein,” Gene, vol. 230, no. 1, pp. 61–67, 1999.
[83]  F. L. Thies, H. Karch, H.-P. Hartung, and G. Giegerich, “Cloning and expression of the dnaK gene of Campylobacter jejuni and antigenicity of heat shock protein 70,” Infection and Immunity, vol. 67, no. 3, pp. 1194–1200, 1999.
[84]  F. L. Thies, A. Weishaupt, H. Karch, H.-P. Hartung, and G. Giegerich, “Cloning, sequencing and molecular analysis of the Campylobacter jejuni groESL bicistronic operon,” Microbiology, vol. 145, no. 1, pp. 89–98, 1999.
[85]  Q. Yuan and W. A. Walker, “Innate immunity of the gut: mucosal defense in health and disease,” Journal of Pediatric Gastroenterology and Nutrition, vol. 38, no. 5, pp. 463–473, 2004.
[86]  L. Hu, J. P. McDaniel, and D. J. Kopecko, “Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81–176,” Microbial Pathogenesis, vol. 40, no. 3, pp. 91–100, 2006.
[87]  J. Zheng, J. Meng, S. Zhao, R. Singh, and W. Song, “Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and toll-like receptor-mediated activation of NF-κB,” Infection and Immunity, vol. 76, no. 10, pp. 4498–4508, 2008.
[88]  J. P. van Spreeuwel, G. C. Duursma, C. J. L. M. Meijer, et al., “Campylobacter colitis: histological immunohistochemical and ultrastructural findings,” Gut, vol. 26, no. 9, pp. 945–951, 1985.
[89]  R. I. Walker, M. B. Caldwell, and E. C. Lee, “Pathophysiology of Campylobacter enteritis,” Microbiological Reviews, vol. 50, no. 1, pp. 81–94, 1986.
[90]  J. M. Ketley, “Pathogeneis of enteric infection by Campylobacter,” Microbiology, vol. 143, no. 1, pp. 5–21, 1997.
[91]  M. Zilbauer, N. Dorrell, A. Elmi et al., “A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni,” Cellular Microbiology, vol. 9, no. 10, pp. 2404–2416, 2007.
[92]  L. Hu, M. D. Bray, Y. Geng, and D. J. Kopecko, “Campylobacter jejuni-mediated induction of CC and CXC chemokines and chemokine receptors in human dendritic cells,” Infection and Immunity, vol. 80, pp. 2929–2939, 2012.
[93]  M. Klaas, C. Oetke, L. E. Lewis, et al., “Sialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen,Campylobacter jejuni,” The Journal of Immunology, vol. 189, pp. 2414–2422, 2012.
[94]  S. Bereswill, A. Fischer, R. Plickert et al., “Novel murine infection models provide deep insights into the “Ménage à trois” of Campylobacter jejuni, microbiota and host innate immunity,” PLoS ONE, vol. 6, no. 6, Article ID e20953, 2011.
[95]  M. Zilbauer, N. Dorrell, P. K. Boughan et al., “Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3,” Infection and Immunity, vol. 73, no. 11, pp. 7281–7289, 2005.
[96]  L. M. Haag, A. Fischer, B. Otto, et al., “Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling,” PloS ONE, vol. 7, Article ID e40761, 2012.
[97]  N. P. Mortensen, M. L. Kuijf, C. W. Ang et al., “Sialylation of Campylobacter jejuni lipo-oligosaccharides is associated with severe gastro-enteritis and reactive arthritis,” Microbes and Infection, vol. 11, no. 12, pp. 988–994, 2009.
[98]  H. N. Stephenson, C. M. John, N. Naz, et al., “Campylobacter jejuni lipooligosaccharide sialylation, phosphorylation, and amide/ester linkage modifications fine-tune human Toll-like receptor 4 activation,” The Journal of Biological Chemistry, vol. 288, pp. 19661–19672, 2013.
[99]  A. P. Heikema, R. I. Koning, S. Duarte dos Santos Rico, et al., “Enhanced, sialoadhesin-dependent uptake of Guillain-Barre syndrome-associated Campylobacter jejuni strains by human macrophages,” Infection and Immunity, vol. 81, pp. 2095–2103, 2013.
[100]  P. A. Johanesen and M. B. Dwinell, “Flagellin-independent regulation of chemokine host defense in Campylobacter jejuni-infected intestinal epithelium,” Infection and Immunity, vol. 74, no. 6, pp. 3437–3447, 2006.
[101]  D. D. Taub, A. R. Lloyd, K. Conlon et al., “Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells,” The Journal of Experimental Medicine, vol. 177, no. 6, pp. 1809–1814, 1993.
[102]  L. Hu, M. D. Bray, M. Osorio, and D. J. Kopecko, “Campylobacter jejuni induces maturation and cytokine production in human dendritic cells,” Infection and Immunity, vol. 74, no. 5, pp. 2697–2705, 2006.
[103]  A. J. MacCallum, D. Harris, G. Haddock, and P. H. Everest, “Campylobacter jejuni-infected human epithelial cell lines vary in their ability to secrete interleukin-8 compared to in vitro-infected primary human intestinal tissue,” Microbiology, vol. 152, no. 12, pp. 3661–3665, 2006.
[104]  L. Hu and T. E. Hickey, “Campylobacter jejuni induces secretion of proinflammatory chemokines from human intestinal epithelial cells,” Infection and Immunity, vol. 73, no. 7, pp. 4437–4440, 2005.
[105]  J. E. Darnell Jr., “STATs and gene regulation,” Science, vol. 277, no. 5332, pp. 1630–1635, 1997.
[106]  D. G. Newell, “Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models,” Journal of Applied Microbiology Symposium Supplement, vol. 90, no. 30, pp. 57S–67S, 2001.
[107]  M. Kist and S. Bereswill, “Campylobacter jejuni,” Contributions to Microbiology, vol. 8, pp. 150–165, 2001.
[108]  M. M. Heimesaat, S. Bereswill, A. Fischer et al., “Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii,” The Journal of Immunology, vol. 177, no. 12, pp. 8785–8795, 2006.
[109]  L. M. Haag, A. Fischer, B. Otto, et al., “Campylobacter jejuni infection of infant mice: acute enterocolitis is followed by asymptomatic intestinal and extra-intestinal immune responses,” European Journal of Microbiology and Immunology, vol. 1, pp. 2–11, 2012.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133