全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiple Criteria ABC Analysis with FCM Clustering

DOI: 10.1155/2013/827274

Full-Text   Cite this paper   Add to My Lib

Abstract:

The number of stock keeping units (SKUs) possessed by organizations can easily reach quite a few. An inventory management policy for each individual SKU is not economical to design. ABC analysis is one of the conventionally used approaches to classify SKUs. In the classical method, the SKUs are ranked with respect to the descending order of the annual dollar usage, which is the product of unit price and annual demand. The few of the SKUs that have the highest annual dollar usage are in group A and should be taken into account mostly; the SKUs with the least annual dollar usage are in group C and should be taken into account least; the remaining SKUs are in group B. In this study, we proposed fuzzy c-means (FCM) clustering to a multicriteria ABC analysis problem to help managers to make better decision under fuzzy circumstancse. The obtained results show that the FCM is a quite simple and an easily adaptable method to inventory management. 1. Introduction Inventory control is a well-known problem in operations research. Several models have been developed to solve inventory problems. In business, companies have hundreds of different types of materials. Therefore, it is easy to lose control of managing the materials. Inventory classification using ABC analysis is one of the most widely used techniques in organizations. ABC classification allows an organization to separate stock keeping units (SKUs) into three groups: A, the most important; B, important; and C, the least important. The purpose of classifying items into groups is to establish appropriate levels of control over each item [1, 2]. The major advantage of ABC analysis is the easiness of use and simplicity to understand. The items are classified according to the annual use value, which is the product of annual demand and the average unit price [3]. The classification of items into A, B, and C groups has generally been implemented according to one criterion. For inventory items, the criterion is frequently the annual dollar usage of the item. However, it has been generally recognized that the traditional ABC analysis has a serious drawback that may inhibit the effectiveness of the procedure in some situations. Using one criterion only may create problems of significant financial loss. For example, class C items with long lead time or class A items prone to obsolescence may incur financial losses due to a possible interruption of production and/or huge inventory levels. Therefore, it has been proposed that multicriteria ABC classification, such as lead time, criticality of a stockout of the item,

References

[1]  F. Y. Partovi and M. Anandarajan, “Classifying inventory using an artificial neural network approach,” Computers and Industrial Engineering, vol. 41, no. 4, pp. 389–404, 2001.
[2]  C.-W. Chu, G. S. Liang, and C. T. Liao, “Controlling inventory by combining ABC analysis and fuzzy classification,” Computers and Industrial Engineering, vol. 55, no. 4, pp. 841–851, 2008.
[3]  R. Ramanathan, “ABC inventory classification with multiple-criteria using weighted linear optimization,” Computers and Operations Research, vol. 33, no. 3, pp. 695–700, 2006.
[4]  H. A. Guvenir and E. Erel, “Multicriteria inventory classification using a genetic algorithm,” European Journal of Operational Research, vol. 105, no. 1, pp. 29–37, 1998.
[5]  M. C. Yu, “Multi-criteria ABC analysis using artificial-intelligence-based classification techniques,” Expert Systems with Applications, vol. 38, no. 4, pp. 3416–3421, 2011.
[6]  B. E. Flores, D. L. Olson, and V. K. Dorai, “Management of multicriteria inventory classification,” Mathematical and Computer Modelling, vol. 16, no. 12, pp. 71–82, 1992.
[7]  O. Cakir and M. S. Canbolat, “A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology,” Expert Systems with Applications, vol. 35, no. 3, pp. 1367–1378, 2008.
[8]  Y. Chen, K. W. Li, D. Marc Kilgour, and K. W. Hipel, “A case-based distance model for multiple criteria ABC analysis,” Computers and Operations Research, vol. 35, no. 3, pp. 776–796, 2008.
[9]  B. E. Flores and D. C. Whybark, “Implementing multiple criteria ABC analysis,” Journal of Operations Management, vol. 7, no. 1-2, pp. 79–85, 1987.
[10]  P. Zhou and L. Fan, “A note on multi-criteria ABC inventory classification using weighted linear optimization,” European Journal of Operational Research, vol. 182, no. 3, pp. 1488–1491, 2007.
[11]  W. L. Ng, “A simple classifier for multiple criteria ABC analysis,” European Journal of Operational Research, vol. 177, no. 1, pp. 344–353, 2007.
[12]  A. Hadi-Vencheh, “An improvement to multiple criteria ABC inventory classification,” European Journal of Operational Research, vol. 201, no. 3, pp. 962–965, 2010.
[13]  I. Al Kattan and A. Bin Adi, “Multi-criteria decision making on total inventory cost and technical readiness,” International Journal Interaction Des Manufacturing, vol. 2, no. 3, pp. 137–150, 2008.
[14]  D. Li, H. Gu, and L. Zhang, “A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data,” Expert Systems with Applications, vol. 37, no. 10, pp. 6942–6947, 2010.
[15]  G. E. Tsekouras and H. Sarimveis, “A new approach for measuring the validity of the fuzzy c-means algorithm,” Advances in Engineering Software, vol. 35, no. 8-9, pp. 567–575, 2004.
[16]  S. Lozano, D. Dobado, J. Larra?eta, and L. Onieva, “Modified fuzzy C-means algorithm for cellular manufacturing,” Fuzzy Sets and Systems, vol. 126, no. 1, pp. 23–32, 2002.
[17]  J. Kang, L. Min, Q. Luan, X. Li, and J. Liu, “Novel modified fuzzy c-means algorithm with applications,” Digital Signal Processing, vol. 19, no. 2, pp. 309–319, 2009.
[18]  Z. Yang, F. L. Chung, and W. Shitong, “Robust fuzzy clustering-based image segmentation,” Applied Soft Computing Journal, vol. 9, no. 1, pp. 80–84, 2009.
[19]  W. Yan, C. H. Chen, and M. D. Shieh, “Product concept generation and selection using sorting technique and fuzzy c-means algorithm,” Computers and Industrial Engineering, vol. 50, no. 3, pp. 273–285, 2006.
[20]  Z. Hou, W. Qian, S. Huang, Q. Hu, and W. L. Nowinski, “Regularized fuzzy c-means method for brain tissue clustering,” Pattern Recognition Letters, vol. 28, no. 13, pp. 1788–1794, 2007.
[21]  A. B. Goktepe, S. Altun, and A. Sezer, “Soil clustering by fuzzy c-means algorithm,” Advances in Engineering Software, vol. 36, no. 10, pp. 691–698, 2005.
[22]  A. Azadeh, M. Anvari, B. Ziaei, and K. Sadeghi, “An integrated fuzzy DEA-fuzzy C-means-simulation for optimization of operator allocation in cellular manufacturing systems,” International Journal of Advanced Manufacturing Technology, vol. 46, no. 1–4, pp. 361–375, 2010.
[23]  I. Ozkan, I. B. Türk?en, and N. Canpolat, “A currency crisis and its perception with fuzzy C-means,” Information Sciences, vol. 178, no. 8, pp. 1923–1934, 2008.
[24]  S. A. Mingoti and J. O. Lima, “Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms,” European Journal of Operational Research, vol. 174, no. 3, pp. 1742–1759, 2006.
[25]  H. Sun, S. Wang, and Q. Jiang, “FCM-based model selection algorithms for determining the number of clusters,” Pattern Recognition, vol. 37, no. 10, pp. 2027–2037, 2004.
[26]  G. A. Keskin, S. Ilhan, and C. ?zkan, “The Fuzzy ART algorithm: a categorization method for supplier evaluation and selection,” Expert Systems with Applications, vol. 37, no. 2, pp. 1235–1240, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413