Trans -10, cis 12-Conjugated Linoleic Acid-Induced Milk Fat Depression Is Associated with Inhibition of PPAR Signaling and Inflammation in Murine Mammary Tissue
Exogenous trans-10, cis-12-CLA (CLA) reduces lipid synthesis in murine adipose and mammary (MG) tissues. However, genomewide alterations in MG and liver (LIV) associated with dietary CLA during lactation remain unknown. We fed mice ( /diet) control or control?+?trans-10, cis-12-CLA (37?mg/day) between d 6 and d 10 postpartum. The 35,302 annotated murine exonic evidence-based oligo (MEEBO) microarray and quantitative RT-PCR were used for transcript profiling. Milk fat concentration was 44% lower on d 10 versus d 6 due to CLA. The CLA diet resulted in differential expression of 1,496 genes. Bioinformatics analyses underscored that a major effect of CLA on MG encompassed alterations in cellular signaling pathways and phospholipid species biosynthesis. Dietary CLA induced genes related to ER stress (Xbp1), apoptosis (Bcl2), and inflammation (Orm1, Saa2, and Cp). It also induced marked inhibition of PPARγ signaling, including downregulation of Pparg and Srebf1 and several lipogenic target genes (Scd, Fasn, and Gpam). In LIV, CLA induced hepatic steatosis probably through perturbations in the mitochondrial functions and induction of ER stress. Overall, results from this study underscored the role of PPARγ signaling on mammary lipogenic target regulation. The proinflammatory effect due to CLA could be related to inhibition of PPARγ signaling. 1. Introduction Dietary nutrients influence the quantity and composition of milk during lactation. Specifically, dietary lipids regulate milk lipid synthesis and milk fatty acid composition in different species of animals. Recently we showed that trans fatty acids (FA) and, in particular, trans-containing conjugated linoleic acid (CLA) isomers regulate murine mammary lipid metabolism to different extents [1]. CLA isomers are the positional and geometric isomers of linoleic acid, an 18-carbon FA with two double bonds. The conjugated double bonds in the CLA are responsible for their biological and biochemical activities. Of the different CLA isomers, the role of trans-10, cis-12-CLA in decreasing milk fat synthesis is well established. The effects of dietary trans-10, cis-12-CLA on lipid metabolism in adipose and liver have been examined previously [2, 3]. Gene expression profiling studies in rodent adipose [2, 4], liver [5–7], and macrophages [8] have been conducted to help elucidate the molecular mechanisms elicited by trans-10, cis-12-CLA. In adipose and liver, trans-10, cis-12-CLA reduces adipogenesis, increases hepatic steatosis, and leads to insulin resistance, hyperinsulinemia, and inflammation [3, 9]. Studies on the
References
[1]
A. K. G. Kadegowda, E. E. Connor, B. B. Teter et al., “Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating mice,” Journal of Nutrition, vol. 140, no. 5, pp. 919–924, 2010.
[2]
R. L. House, J. P. Cassady, E. J. Eisen et al., “Functional genomic characterization of delipidation elicited by trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) in a polygenic obese line of mice,” Physiological Genomics, vol. 21, pp. 351–361, 2005.
[3]
D. Vyas, A. K. Kadegowda, and R. A. Erdman, “Dietary conjugated linoleic Acid and hepatic steatosis: species-specific effects on liver and adipose lipid metabolism and gene expression,” Journal of Nutrition and Metabolism, vol. 2012, Article ID 932928, 13 pages, 2012.
[4]
P. C. LaRosa, J. Miner, Y. Xia, Y. Zhou, S. Kachman, and M. E. Fromm, “Trans-10, cis-12 conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice: a microarray and histological analysis,” Physiological Genomics, vol. 27, no. 3, pp. 282–294, 2006.
[5]
M. S. Ashwell, R. P. Ceddia, R. L. House et al., “Trans-10, cis-12-conjugated linoleic acid alters hepatic gene expression in a polygenic obese line of mice displaying hepatic lipidosis,” Journal of Nutritional Biochemistry, vol. 21, no. 9, pp. 848–855, 2010.
[6]
N. Guillén, M. A. Navarro, C. Arnal et al., “Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver,” Physiological Genomics, vol. 37, no. 3, pp. 187–198, 2009.
[7]
R. Rasooly, D. S. Kelley, J. Greg, and B. E. Mackey, “Dietary trans 10, cis 12-conjugated linoleic acid reduces the expression of fatty acid oxidation and drug detoxification enzymes in mouse liver,” British Journal of Nutrition, vol. 97, no. 1, pp. 58–66, 2007.
[8]
J. Ecker, T. Langmann, C. Moehle, and G. Schmitz, “Isomer specific effects of Conjugated Linoleic Acid on macrophage ABCG1 transcription by a SREBP-1c dependent mechanism,” Biochemical and Biophysical Research Communications, vol. 352, no. 3, pp. 805–811, 2007.
[9]
H. Poirier, J. S. Shapiro, R. J. Kim, and M. A. Lazar, “Nutritional supplementation with trans-10, cis-12-conjugated linoleic acid induces inflammation of white adipose tissue,” Diabetes, vol. 55, no. 6, pp. 1634–1641, 2006.
[10]
M. M. Ip, P. A. Masso-Welch, S. F. Shoemaker, W. K. Shea-Eaton, and C. Ip, “Conjugated linoleic acid inhibits proliferation and induces apoptosis of normal rat mammary epithelial cells in primary culture,” Experimental Cell Research, vol. 250, no. 1, pp. 22–34, 1999.
[11]
A. F. Keating, F. Q. Zhao, K. A. Finucane, D. R. Glimm, and J. J. Kennelly, “Effect of conjugated linoleic acid on bovine mammary cell growth, apoptosis and stearoyl Co-A desaturase gene expression,” Domestic Animal Endocrinology, vol. 34, no. 3, pp. 284–292, 2008.
[12]
J. J. Loor, X. Lin, and J. H. Herbein, “Effects of dietary cis 9, trans 11–18?:?2, trans 10, cis 12–18?:?2, or vaccenic acid (trans 11–18?:?1) during lactation on body composition, tissue fatty acid profiles, and litter growth in mice,” British Journal of Nutrition, vol. 90, no. 6, pp. 1039–1048, 2003.
[13]
A. K. G. Kadegowda, M. Bionaz, L. S. Piperova, R. A. Erdman, and J. J. Loor, “Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents,” Journal of Dairy Science, vol. 92, no. 9, pp. 4276–4289, 2009.
[14]
M. Bionaz, K. Periasamy, S. L. Rodriguez-Zas, et al., “Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle,” PLoS ONE, vol. 7, no. 3, Article ID e33268, 2012.
[15]
M. Bionaz, K. Periasamy, S. L. Rodriguez-Zas, W. L. Hurley, and J. J. Loor, “A novel dynamic impact approach (DIA) for functional analysis of time-course omics studies: validation using the bovine mammary transcriptome,” PLoS ONE, vol. 7, no. 3, Article ID e32455, 2012.
[16]
R. C. Hovey and L. Aimo, “Diverse and active roles for adipocytes during mammary gland growth and function,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 3, pp. 279–290, 2010.
[17]
A. K. Kadegowda, J. H. Jeong, and I. H. Mather, “Effect of dietary trans-10, cis-12 conjugated linoleic acid (CLA) on the lactating mammary glands of wild-type and butyrophilin 1a1 knock-out mice,” Molecular Biology of the Cell, vol. 21, supplement, abstract #634, 2010.
[18]
M. C. Rudolph, J. Monks, V. Burns et al., “Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium,” American Journal of Physiology, vol. 299, no. 6, pp. E918–E927, 2010.
[19]
M. C. Rudolph, J. L. McManaman, T. Phang et al., “Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine,” Physiological Genomics, vol. 28, no. 3, pp. 323–336, 2007.
[20]
J. P. Pegorier, C. Le May, J. Girard, et al., “Control of gene expression by fatty acids,” The Journal of Nutrition, vol. 134, no. 9, pp. 2444S–2449S, 2004.
[21]
S. J. Bensinger and P. Tontonoz, “Integration of metabolism and inflammation by lipid-activated nuclear receptors,” Nature, vol. 454, no. 7203, pp. 470–477, 2008.
[22]
J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002.
[23]
B. Desvergne, L. Michalik, and W. Wahli, “Transcriptional regulation of metabolism,” Physiological Reviews, vol. 86, no. 2, pp. 465–514, 2006.
[24]
A. Cimini, L. Cristiano, S. Colafarina et al., “PPARγ-dependent effects of conjugated linoleic acid on the human glioblastoma cell line (ADF),” International Journal of Cancer, vol. 117, no. 6, pp. 923–933, 2005.
[25]
M. Wang, S. R. Master, and L. A. Chodosh, “Computational expression deconvolution in a complex mammalian organ,” BMC Bioinformatics, vol. 7, article 328, 2006.
[26]
G. Tettamanti, “Ganglioside/glycosphingolipid turnover: new concepts,” Glycoconjugate Journal, vol. 20, no. 5, pp. 301–317, 2003.
[27]
M. Momoeda, S. Fukuta, Y. Iwamori, Y. Taketani, and M. Iwamori, “Prolactin-dependent expression of GD1α ganglioside, as a component of milk fat globule, in the murine mammary glands,” Journal of Biochemistry, vol. 142, no. 4, pp. 525–531, 2007.
[28]
C. K. Nye, R. W. Hanson, and S. C. Kalhan, “Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat,” Journal of Biological Chemistry, vol. 283, no. 41, pp. 27565–27574, 2008.
[29]
R. P. DiAugustine, R. G. Richards, and J. Sebastian, “EGF-related peptides and their receptors in mammary gland development,” Journal of Mammary Gland Biology and Neoplasia, vol. 2, no. 2, pp. 109–117, 1997.
[30]
Y. Yarden and M. X. Sliwkowski, “Untangling the ErbB signalling network,” Nature Reviews Molecular Cell Biology, vol. 2, no. 2, pp. 127–137, 2001.
[31]
M. M. Ip, S. O. McGee, P. A. Masso-Welch et al., “The t10,c12 isomer of conjugated linoleic acid stimulates mammary tumorigenesis in transgenic mice over-expressing erbB2 in the mammary epithelium,” Carcinogenesis, vol. 28, no. 6, pp. 1269–1276, 2007.
[32]
G. E. Berryhill, J. M. Gloviczki, J. F. Trott, et al., “Diet-induced metabolic change induces estrogen-independent allometric mammary growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 40, pp. 16294–16299, 2012.
[33]
M. Flowers, J. A. Schroeder, A. D. Borowsky et al., “Pilot study on the effects of dietary conjugated linoleic acid on tumorigenesis and gene expression in PyMT transgenic mice,” Carcinogenesis, vol. 31, no. 9, pp. 1642–1649, 2010.
[34]
P. J. Goldschmidt-Clermont, M. I. Furman, D. Wachsstock, D. Safer, V. T. Nachmias, and T. D. Pollard, “The control of actin nucleotide exchange by thymosinβ4 and profilin. A potential regulatory mechanism for actin polymerization in cells,” Molecular Biology of the Cell, vol. 3, no. 9, pp. 1015–1024, 1992.
[35]
A. Hall, “Rho GTpases and the actin cytoskeleton,” Science, vol. 279, no. 5350, pp. 509–514, 1998.
[36]
A. J. Ridley, “Rho GTPases and cell migration,” Journal of Cell Science, vol. 114, no. 15, pp. 2713–2722, 2001.
[37]
C. Murphy, R. Saffrich, M. Grummt et al., “Endosome dynamics regulated by a Rho protein,” Nature, vol. 384, no. 6608, pp. 427–432, 1996.
[38]
L. Ou, Y. Wu, C. Ip, X. Meng, Y. C. Hsu, and M. M. Ip, “Apoptosis induced by t10,c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response,” Journal of Lipid Research, vol. 49, no. 5, pp. 985–994, 2008.
[39]
A. S. Pierre, M. Minville-Walz, C. Fevre, et al., “Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress,” Biochimica et Biophysica Acta, vol. 1831, no. 4, pp. 759–768, 2013.
[40]
E. Gruys, M. J. M. Toussaint, T. A. Niewold, and S. J. Koopmans, “Acute phase reaction and acute phase proteins,” Journal of Zhejiang University, vol. 6, no. 11, pp. 1045–1056, 2005.
[41]
M. Q. Kemp, B. D. Jeffy, and D. F. Romagnolo, “Conjugated linoleic acid inhibits cell proliferation through a p53-dependent mechanism: effects on the expression of G1-restriction points in breast and colon cancer cells,” Journal of Nutrition, vol. 133, no. 11, pp. 3670–3677, 2003.
[42]
J. H. Seo, H. S. Moon, I. Y. Kim et al., “PEGylated conjugated linoleic acid stimulation of apoptosis via a p53-mediated signaling pathway in MCF-7 breast cancer cells,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 2, pp. 621–626, 2008.
[43]
L. Ou, C. Ip, B. Lisafeld, and M. M. Ip, “Conjugated linoleic acid induces apoptosis of murine mammary tumor cells via Bcl-2 loss,” Biochemical and Biophysical Research Communications, vol. 356, no. 4, pp. 1044–1049, 2007.
[44]
W. Wick, C. Grimmel, B. Wagenknecht, J. Dichgans, and M. Weller, “Betulinic acid-induced apoptosis in glioma cells: a sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing,” Journal of Pharmacology and Experimental Therapeutics, vol. 289, no. 3, pp. 1306–1312, 1999.
[45]
L. M. Fedorov, O. Y. Tyrsin, T. Papadopoulos, G. Camarero, R. G?tz, and U. R. Rapp, “Bcl-2 determines susceptibility to induction of lung cancer by oncogenic CRaf,” Cancer Research, vol. 62, no. 21, pp. 6297–6303, 2002.
[46]
M. D. Glibetic and H. Baumann, “Influence of chronic inflammation on the level of mRNA for acute-phase reactants in the mouse liver,” Journal of Immunology, vol. 137, no. 5, pp. 1616–1622, 1986.
[47]
I. Kushner, “The phenomenon of the acute phase response,” Annals of the New York Academy of Sciences, vol. 389, pp. 39–48, 1982.
[48]
M. E. Selsted and A. J. Ouellette, “Mammalian defensins in the antimicrobial immune response,” Nature Immunology, vol. 6, no. 6, pp. 551–557, 2005.
[49]
D. M. E. Bowdish, D. J. Davidson, and R. E. W. Hancock, “Immunomodulatory properties of defensins and cathelicidins,” Current Topics in Microbiology and Immunology, vol. 306, pp. 27–66, 2006.
[50]
J. Butmarc, T. Yufit, P. Carson, and V. Falanga, “Human β-defensin-2 expression is increased in chronic wounds,” Wound Repair and Regeneration, vol. 12, no. 4, pp. 439–443, 2004.
[51]
D. Nayak, Y. Huo, W. X. T. Kwang et al., “Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia,” Neuroscience, vol. 166, no. 1, pp. 132–144, 2010.
[52]
S. Pensa, C. J. Watson, and V. Poli, “Stat3 and the inflammation/acute phase response in involution and breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 14, no. 2, pp. 121–129, 2009.
[53]
T. Stein, J. S. Morris, C. R. Davies et al., “Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3,” Breast Cancer Research, vol. 6, no. 2, pp. R75–R91, 2004.
[54]
C. J. Watson, “Immune cell regulators in mouse mammary development and involution,” Journal of Animal Science, vol. 87, no. 13, pp. 35–42, 2009.
[55]
Y. Wan, A. Saghatelian, L. W. Chong, C. L. Zhang, B. F. Cravatt, and R. M. Evans, “Maternal PPARγ protects nursing neonates by suppressing the production of inflammatory milk,” Genes and Development, vol. 21, no. 15, pp. 1895–1908, 2007.
[56]
J. J. Loor and J. H. Herbein, “Exogenous conjugated linoleic acid isomers reduce bovine milk fat concentration and yield by inhibiting de novo fatty acid synthesis,” Journal of Nutrition, vol. 128, no. 12, pp. 2411–2419, 1998.
[57]
V. Poli, “The role of C/EBP isoforms in the control of inflammatory and native immunity functions,” Journal of Biological Chemistry, vol. 273, no. 45, pp. 29279–29282, 1998.
[58]
K. Zhang and R. J. Kaufman, “From endoplasmic-reticulum stress to the inflammatory response,” Nature, vol. 454, no. 7203, pp. 455–462, 2008.
[59]
M. S. Kim, T. R. Sweeney, J. K. Shigenaga et al., “Tumor necrosis factor and interleukin 1 decrease RXRα, PPARα, PPARγ, LXRα, and the coactivators SRC-1, PGC-1α, and PGC-1β in liver cells,” Metabolism, vol. 56, no. 2, pp. 267–279, 2007.
[60]
C. P. Day and O. F. W. James, “Steatohepatitis: a tale of two ‘Hits’?” Gastroenterology, vol. 114, no. 4, pp. 842–845, 1998.
[61]
Z. Z. Li, M. Berk, T. M. McIntyre, and A. E. Feldstein, “Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-Coa desaturase,” Journal of Biological Chemistry, vol. 284, no. 9, pp. 5637–5644, 2009.
[62]
L. Clément, H. Poirier, I. Niot et al., “Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse,” Journal of Lipid Research, vol. 43, no. 9, pp. 1400–1409, 2002.
[63]
N. Tsuboyama-Kasaoka, M. Takahashi, K. Tanemura et al., “Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice,” Diabetes, vol. 49, no. 9, pp. 1534–1542, 2000.
[64]
M. B. Stout, L. F. Liu, and M. A. Belury, “Hepatic steatosis by dietary-conjugated linoleic acid is accompanied by accumulation of diacylglycerol and increased membrane-associated protein kinase C ε in mice,” Molecular Nutrition and Food Research, vol. 55, no. 7, pp. 1010–1017, 2011.
[65]
B. Fromenty, M. A. Robin, A. Igoudjil, A. Mansouri, and D. Pessayre, “The ins and outs of mitochondrial dysfunction in NASH,” Diabetes and Metabolism, vol. 30, no. 2, pp. 121–138, 2004.
[66]
M. Flamment, H. L. Kammoun, I. Hainault, P. Ferré, and F. Foufelle, “Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis,” Current Opinion in Lipidology, vol. 21, no. 3, pp. 239–246, 2010.
[67]
T. Ota, C. Gayet, and H. N. Ginsberg, “Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 316–332, 2008.
[68]
A. H. Lee, E. F. Scapa, D. E. Cohen, and L. H. Glimcher, “Regulation of hepatic lipogenesis by the transcription factor XBP1,” Science, vol. 320, no. 5882, pp. 1492–1496, 2008.
[69]
D. Wang, Y. Wei, and M. J. Pagliassotti, “Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis,” Endocrinology, vol. 147, no. 2, pp. 943–951, 2006.
[70]
Y. Wei, D. Wang, and M. J. Pagliassotti, “Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells,” Molecular and Cellular Biochemistry, vol. 303, no. 1-2, pp. 105–113, 2007.
[71]
C. L. Gentile and M. J. Pagliassotti, “The role of fatty acids in the development and progression of nonalcoholic fatty liver disease,” Journal of Nutritional Biochemistry, vol. 19, no. 9, pp. 567–576, 2008.
[72]
S. Landskroner-Eiger, J. Park, D. Israel, J. W. Pollard, and P. E. Scherer, “Morphogenesis of the developing mammary gland: stage-dependent impact of adipocytes,” Developmental Biology, vol. 344, no. 2, pp. 968–978, 2010.