全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tidal Influence on Nutrients Status and Phytoplankton Population of Okpoka Creek, Upper Bonny Estuary, Nigeria

DOI: 10.1155/2013/684739

Full-Text   Cite this paper   Add to My Lib

Abstract:

Okpoka Creek of the Upper Bonny Estuary in the Niger Delta is a tidal creek receiving organic anthropogenic effluents from its environs. The study investigated the influence of tides (low and high) on the species composition, diversity, abundance, and distribution of phytoplankton. The surface water and phytoplankton samples were collected monthly from May 2004 to April 2006 at both tides from ten stations according to standard methods. Phytoplankton was identified microscopically. Species diversity was calculated using standard indices. Data analyses were done using analysis of variance, Duncan multiple range, and descriptive statistics. Phosphate and ammonia exceeded international acceptable levels of 0.10?mg/L for natural water bodies indicating high nutrient status, organic matter, and potential pollutants. A total of 158 species of phytoplankton were identified. Diatoms dominated the phytoplankton (62.9%). Diversity indices of diatoms were (Margalef) and (Shannon). Pollution-indicator species such as Navicula microcephala, Nitzschia sigma, Synedra ulna (diatoms), Cladophora glomerata (green alga), Euglena acus (euglenoid), Anabeana spiroides (blue-green alga), and Ceratium furca (dinoflagellate) were recorded at either only low, high or both tides. Concerted environmental surveillance on Upper Bonny Estuary is advocated to reduce the inflow of pollutants from the Bonny Estuary into this Creek caused by tidal influence. 1. Introduction Estuaries are unique aquatic environments that have an additional source of buoyancy input derived from riverine freshwater inflow and an additional source of mechanical energy input from the tides (tidal stirring). Estuarine ecosystems are very favourable for algae and animal life. They play an important ecological role because they are natural habitants of water. They are widely used as an indicator of water pollution [1]. The Bonny Estuary is one of the several estuaries in the Niger Delta swamps through which the Lower Niger and Benue Rivers flow into the ocean. The estuary is richly endowed with abundant aquatic resources (creeks, distributaries, flood plains and mangrove swamps with fin/shell fish resources, etc.). The estuary, its creeks, and tributaries consist of rich collection of flora and fauna constituting a unique tropical biodiversity. The vegetation of Bonny Estuary is dominated by the red mangrove Rhizophora racemosa and R. mangle [2]. The mangrove provides nurseries and feeding grounds for commercially important species of finfish and shellfish. Despite its good environment for aquatic life forms,

References

[1]  H. Badsi, H. Oulad Ali, M. Loudiki, and A. Aamiri, “Phytoplankton diversity and community composition along the salinity gradient of the massa estuary,” American Journal of Human Ecology, vol. 1, no. 2, pp. 58–64, 2012.
[2]  B. H. Wilcox, “Angiosperm flora of the Niger Delta mangal: a taxonomic review,” in Proceedings of Workshop on the Niger Delta Mangrove Ecosystem, pp. 19–23, Port Harcourt, Nigeria, October 1980.
[3]  F. Villate, “Tidal influence on zonation and occurrence of resident and temporary zooplankton in a shallow system (Estuary of Mundaka, Bay of Biscay),” Scientia Marina, vol. 61, no. 2, pp. 173–188, 1997.
[4]  J. M. Trigueros and E. Orive, “Tidally driven distribution of phytoplankton blooms in a shallow, macrotidal estuary,” Journal of Plankton Research, vol. 22, no. 5, pp. 969–986, 2000.
[5]  C. Riaux-Gobin, “Phytoplankton, tripton et microphytobenthos: échanges au cours de la mareé, dans un estuaire du Nord-Finistère,” Cahiers de Biologie Marine, vol. 28, pp. 159–184, 1987.
[6]  L. A. Morales-Zamorano, R. Cajal-Medrano, E. Orellana-Cepeda, and L. C. Jimenez-Perez, “Effect of tidal dynamics on a planktonic community in a coastal lagoon of Baja California, Mexico,” Marine Ecology Progress Series, vol. 78, no. 3, pp. 229–239, 1991.
[7]  J. E. Cloern, “Tidal stirring and phytoplankton bloom dynamics in an estuary,” Journal of Marine Research, vol. 49, no. 1, pp. 203–221, 1991.
[8]  L. V. Lucas and J. E. Cloern, “Effects of tidal shallowing and deepening on phytoplankton production dynamics: a modeling study,” Estuaries A, vol. 25, no. 4, pp. 497–507, 2002.
[9]  A. N. Blauw, E. Benincà, R. W. P. M. Laane, N. Greenwood, and J. Huisman, “Dancing with the tides: fluctuations of coastal phytoplankton orchestrated by different oscillatory modes of the tidal cycle,” PLoS ONE, vol. 7, no. 11, Article ID e49319, 2012.
[10]  K. M. Rajesh, G. Gowda, and R. M. Mridula, “Primary productivity of the brackishwater impoundments along Nethravathi estuary, Mangalore in relation to some physico-chemical parameters,” Fishery Technology, vol. 39, no. 2, pp. 85–87, 2002.
[11]  G. Ananthan, P. Sampathkumar, P. Soundarapandian, and L. Kannan, “Observations on environmental characteristics of Ariyankuppam estuary and Verampattinam coast of Pondicherry,” Journal of Aquatic Biology, vol. 19, pp. 67–72, 2004.
[12]  A. Tiwari and S. V. S. Chauhan, “Seasonal phytoplanktonic diversity of Kitham lake, Agra,” Journal of Environmental Biology, vol. 27, no. 1, pp. 35–38, 2006.
[13]  B. Tas and A. Gonulol, “An ecologic and taxonomic study on phytoplankton of a shallow lake, Turkey,” Journal of Environmental Biology, vol. 28, no. 2, pp. 439–445, 2007.
[14]  A. Saravanakumar, J. Sesh Serebiah, G. A. Thivakaran, and M. Rajkumar, “Benthic macrofaunal assemblage in the arid zone mangroves of gulf of Kachchh-Gujarat,” Journal of Ocean University of China, vol. 6, no. 3, pp. 303–309, 2007.
[15]  P. Ponmanickam, T. Rajagopal, M. K. Rajan, S. Achiraman, and K. Palanivelu, “Assessment of drinking water quality of Vembakottai reservoir, Virudhunagar district, Tamil Nadu,” Journal of Experimental Zoology, vol. 10, no. 2, pp. 485–488, 2007.
[16]  T. R. Shashi Shekhar, B. R. Kiran, E. T. Puttaiah, Y. Shivaraj, and K. M. Mahadevan, “Phytoplankton as index of water quality with reference to industrial pollution,” Journal of Environmental Biology, vol. 29, no. 2, pp. 233–236, 2008.
[17]  American Public Health Association (APHA), Standard Method for the Examination of Water and WasteWater, McGraw-Hill, Washington DC, USA, 16th edition, 1985.
[18]  C. E. Boyd, Water Quality in Warmwater Fish Ponds, Craftmaster, Auburn, Alabama, USA, 2nd edition, 1981.
[19]  J. G. Needham and P. R. Needham, A Guide to the Study of Freshwater Biology, Holden-Day, San Francisco, Calif, USA, 2nd edition, 1962.
[20]  G. E. Newell and R. C. Newell, Marine Plankton: A Practical Guide, Hutchinson Publishing Limited, London, UK, 1st edition, 1963.
[21]  R. Patrick and C. Reimer, The Diatoms of the United States Exclusive Alaska and Hawaii T. Fragillariaceae, Eunoticeae, Achnanthaceae, Naviculaceae, Livingstone, Philadelphia, Pa, USA, 1966.
[22]  M. Han, Illustration of Freshwater Plankton, Agricultural Press, Auburn, Alabama, USA, 1st edition, 1978.
[23]  J. R. Durans and C. Leveque, “Flore et farune aquatiquesde 1, afrique-an-off erch,” Science Technica Qutre-Mer, vol. 1, pp. 5–46, 1980.
[24]  G. W. Prescott, How to Know the Freshwater Algae, McGrawHill, Washington, DC, USA, 1982.
[25]  M. O. Kadiri, “A taxonomic study of the genus Closterium (Nizch. 1919), Ralfs 1945 (Desmichaceae Chlorophyta) in small Nigeria Reservoir with ecological notes,” Tropical Freshwater Biology, vol. 1, pp. 71–90, 1988.
[26]  E. P. Odum, Fundamentals of Ecology, W.B. Saunders, London, UK, 3rd edition, 1971.
[27]  Statistical Analysis System (SAS), User’s Guide SAS/STA-T version, SAS Institute, Cary, NC, USA, 8th edition, 2003.
[28]  M. Yamamuro, I. Koike, and H. Iizumi, “Partitioning of the nitrogen stock in the vicinity of a Fijian seagrass bed dominated by Syringodium isoetifolium (Ascherson) Dandy,” Australian Journal of Marine & Freshwater Research, vol. 44, no. 1, pp. 101–115, 1993.
[29]  R. V. Thurston, R. C. Russo, and G. A. Vinogradov, “Ammonia toxicity to fishes. Effect of pH on the toxicity of the un-ionized ammonia species,” Environmental Science and Technology, vol. 15, no. 7, pp. 837–840, 1981.
[30]  R. N. McNeely, V. P. Neimanis, and L. Dwyer, Water Quality Sourcebook: A Guide to Water Quality Parameters, Inland Waters Directorate, Water Quality Branch, Ottawa, Canada, 1979.
[31]  Environmental Studies Board (ESB), “Water quality criteria 1972,” Committee of Water Quality Criteria Report EPA-R3-73-033, Environmental Protection Agency, Washington, DC, USA, 1973.
[32]  A. C. Chindah and U. Nduaguibe, “Effect of tank farm wastewater on water quality and periphyton of Lower Bonny River Niger Delta, Nigeria,” Journal of Nigeria Environmental Society, vol. 1, no. 2, pp. 206–222, 2003.
[33]  C. C. Obunwo, S. A. Braide, W. A. L. Izonfuo, and A. C. Chindah, “Influence of urban activities on the water quality of a fresh water stream in the Niger Delta, Nigeria,” Journal of Nigerian Environmental Society, vol. 2, no. 2, pp. 196–209, 2004.
[34]  L. Zimmerman, “Phytoplankton-National Estuarine Research Reserve,” 2013, nerrs.noaa.gov/doc/siteprofile/acebasin/html/biores/phy.
[35]  T. A. Frankovich, E. E. Gaiser, J. C. Zieman, and A. H. Wachnicka, “Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex K?nig: relationships to water quality,” Hydrobiologia, vol. 569, no. 1, pp. 259–271, 2006.
[36]  J. Creswell, R. Karasack, R. Johnson, and H. Shayler, “Nitrogen and phosphorus in limitation in Mill and Green ponds and the effects of nutrient enrichment,” Macalester Environmental Review, 2001.
[37]  P. M. Vitousek and R. W. Howarth, “Nitrogen limitation on land and in the sea: how can it occur?” Biogeochemistry, vol. 13, no. 2, pp. 87–115, 1991.
[38]  European Economic Community (EEC), “Council directive on the quality of freshwater needing protection or improvement in order to support fish life,” Offshore Journal of European Commununities, L259, pp. 1–10, 1979.
[39]  United States Environmental Protection Agency (USEPA), “Nitrate-Water,” 2000, http://water.epa.gov/type/rsl/monitoring/vms57.cfm.
[40]  United States Geological Survey (USGS), “Nutrients in the Nation's Waters—Too Much of a Good Thing?” 2013, http://pubs.usgs.gov/circ/circ1136/circ1136.html.
[41]  N. Ebere, The impact of oil refinery effluents on the distribution, abundance and community structure of macro-benthos in Okrika Creek [Ph.D. thesis], Department of Biological Sciences, Rivers state University of Science and Technology, 2002.
[42]  A. J. Edoghotu, The ecological quotients (EQ) of point source of pollution along Okpoka Creek, Port Harcourt [M.S. thesis], Department of Biological Sciences, Rivers State University of Science and Technology, 1998.
[43]  A. C. Chindah and R. I. Keremah, “Physico-chemistry and phytoplankton of a brackish water fish pond of the Bonny Estuary Nigeria,” African Journal of Environmental Studies, vol. 2, no. 2, pp. 63–67, 2001.
[44]  A. C. Chindah and S. A. Braide, “Crude oil spill and the phytoplankton community of a swamp forest stream,” African Journal of Environmental Studies, vol. 2, no. 1, pp. 1–8, 2001.
[45]  A. C. Chindah and S. A. Braide, “The physico-chemical quality and phytoplankton community of tropical waters: a case of 4 Biotopes in the Lower Bonny River, Niger Delta, Nigeria,” Caderno de Pesquisa, vol. 16, no. 2, pp. 7–35, 2004.
[46]  K. A. Moser, G. M. MacDonald, and J. P. Smol, “Applications of freshwater diatoms to geographical research,” Progress in Physical Geography, vol. 20, no. 1, pp. 21–52, 1996.
[47]  U. Krumme and T. H. Liang, “Tidal-induced changes in a copepod-dominated zooplankton community in a macrotidal mangrove channel in northern Brazil,” Zoological Studies, vol. 43, no. 2, pp. 404–414, 2004.
[48]  D. L. Roelke, R. M. Errera, R. Riesling et al., “Effects of nutrient enrichment on Prymnesium parvum population dynamics and toxicity: results from field experiments, Lake Possum Kingdom, USA,” Aquatic Microbial Ecology, vol. 46, no. 2, pp. 125–140, 2007.
[49]  S. I. Passy, R. W. Bode, D. M. Carlson, and M. A. Novak, “Comparative environmental assessment in the studies of benthic diatom, macroinvertebrate, and fish communities,” International Review of Hydrobiology, vol. 89, no. 2, pp. 121–138, 2004.
[50]  D. U. Okpuruka, “Tidal and semi-lunar variations in the surface phytoplankton of a Port Harcourt mangrove creek,” in Proceedings of the Workshop on Nigerian Wetlands, T. V. I. Akpata and D. U. U. Okali, Eds., pp. 1–183, Lagos, Nigeria, August 1986.
[51]  D. I. Nwankwo and A. Akinsoji, “Periphyton algae of a eutrophic Creek and their possible use as indicator,” Nigerian Journal of Botany, vol. 1, pp. 47–54, 1988.
[52]  D. I. Nwankwo and A. O. Onitiri, “Periphyton community on submerged aquatic macrophytes (Hornwort and Bladderwort) in Epe Lagoon, Nigeria,” Journal of Agricultural Science Technology, vol. 2, no. 2, pp. 135–141, 1992.
[53]  D. I. Nwankwo and S. A. Amuda, “Periphytic diatoms on three floating aquatic macrophytes in a polluted south-west Nigerian creek,” International Journal of Ecology & Environmental Sciences, vol. 19, no. 1, pp. 1–10, 1993.
[54]  D. I. Nwankwo, “Hydrochemical properties and bottom-dwelling diatoms of a Lagos lagoon sewage disposal site,” Polskie Archiwum Hydrobiologii, vol. 41, no. 1, pp. 35–47, 1994.
[55]  D. I. Nwankwo and K. A. Kasumu-Iginla, “Contributions to the diatom flora of Nigeria 11 Tube-dwelling pinnate diatoms from Lagos Moles,” Nigeria Journal of Botany, vol. 10, pp. 61–69, 1997.
[56]  D. I. Nwankwo, “Seasonal changes in phytoplankton composition and diversity in the Epe lagoon, Nigeria,” Acta Hydrobiology, vol. 40, no. 2, pp. 83–92, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133